

## Vertex Prime Labeling of the Two Copies of Cycle Graphs

\*<sup>1</sup> Thenmozhi S and <sup>2</sup>Karunakaran V

\*<sup>1,2</sup> Assistant Professor. Department of Mathematics, T.K.G. Arts. College, Vridhachalam, Tamil Nadu, India.

### Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

[www.alladvancejournal.com](http://www.alladvancejournal.com)

Received: 21/June/2025

Accepted: 23/July/2025

### Abstract

A graph with 'h' points and 't' lines  $\mu_1 = (M_1, N_1)$  is said to have a vertex prime labeling (VPL) if its lines can be labeled by unique integers from  $\{1, 2, 3, \dots, |N_1|\}$ , such that for every degree at least two, the greatest common divisor of the labels on its event lines one. A graph that admits VPL is called a vertex prime graph (VPG). Graph labeling is an important area of research in Graph theory. There are many kinds of graph labeling such as Graceful labeling, Magic labeling, Prime labeling, and other differend labeling techniques. In In this work, we examine the VPG of two copies of Cycle ( $2C_q$ ).

### \*Corresponding Author

Thenmozhi S

Assistant Professor. Department of Mathematics, T.K.G. Arts. College, Vridhachalam, Tamil Nadu, India.

**Keywords:** Prime labeling , vertex prime labeling, Cycle and Path.

### Introduction

In this paper we consider only the defined simple undirected graph. The graph  $\mu_1$  has a point set  $M_1 = M_1(\mu_1)$  and line set  $N_1 = N_1(\mu_1)$ . References and glossary are provided by Pandi and Murthy [3]. The concept of prime labeling was introduced by Roger Entringer and discussed in a paper by Tout.A [2]. Meena.S and Vaithilingam.K [7] demonstrated that the and Helm  $H_h$  graph is a prime graph [9]. Meena.S and Ezhil.A [8] demonstrated that the Cycle  $C_h$  and path  $P_h$  graph are a total prime graph. We refer to Gallian. J.A. [1] as a current dynamic graph labeling examine.

Two integers' b and c are said to be relativity prime if the greatest common divisor is one. Relativity prime numbers play an important role in both analytic and algebraic number theory. Many researchers have studied prime graphs. For example Fu. H [5] have demonstrated that path  $P_h$  on h points is a prime graph. Karunakaran.V and Thenmozhi.S [9] have demonstrated that the Cycle  $C_h$  is a prime graph.

### Definition: 1.1

Let  $\mu_1 = (M_1(\mu_1), N_1(\mu_1))$  be a graph with h points and t lines. If for every line  $e = bc$ ,  $\text{Gcd } \{b_1(b), b_1(c)\} = 1$ , then the bijective function  $b_1: M_1(\mu_1) \rightarrow \{1, 2, \dots, h\}$  is called a PL. A graph that admits a PL is called a PG.

### Definition: 1.2

Let  $\mu_1 = (M_1(\mu_1), N_1(\mu_1))$  be a graph with h points and t lines. The bijective function

$b_1: N_1(\mu_1) \rightarrow \{1, 2, \dots, t\}$  is called a VPL if every point has at least two degrees and the greatest common divisor of the labels on its event line is one. That is  $\text{Gcd } \{b_1(b), b_1(c)\} = 1$ .

### Definition: 1.3

Simple graph with h points ( $h \geq 3$ ) and h lines forming a cycle of length h is called a cyclic graph  $C_h$ .

### Definition: 1.4

The path  $P_h$  has h points and h-1 lines.

### Main Results: 2

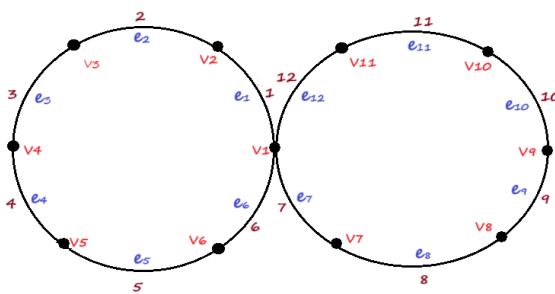
#### Theorem: 2.1

A VPG is made up of two copies of Cycle ( $2C_h$ ) (for all h) connected by a single common point.

### Proof:

Let  $\mu_1$  be a graph consisting of two copies of Cycle ( $2C_h$ ) connected by a single common point.

Let  $M_1(\mu_1) = \{u_1, u_2, u_3, \dots, u_h, u_{h+1}, u_{h+2}, \dots, u_{2h-1}\}$


Let  $N_1(\mu_1) = \{u_t u_{t+1} / 1 \leq t \leq h-1\} \cup \{u_h u_1\} \cup \{u_1 u_{h+1}\} \cup \{u_t u_{t+1} /$

$h+1 \leq t \leq 2h-2 \cup \{u_{2h-1}u_1\}$  and  $|M_1(\mu_1)| = 2h-1$ ,  $|N_1(\mu_1)| = 2h$   
 A bijection  $b_1$  is defined by  $b_1: N_1(\mu_1) \rightarrow \{1, 2, 3, \dots, 2h\}$   
 such that  $b_1(w_t) = t$ ;  $1 \leq t \leq 2h$

- Gcd of the incident of all lines  $u_1 = \text{Gcd} \{w_1, w_h, w_{h+1}, w_{2h}\} = 1$
- Gcd of the incident of all lines  $u_t = \text{Gcd} \{(w_{t-1}, w_t) / 2 \leq t \leq h\} = 1$
- Gcd of the incident of all lines  $u_t = \text{Gcd} \{(w_t, w_{t+1}) / h+1 \leq t \leq 2h-1\} = 1$

Thus, the Gcd of each points of degree at least two all the event line is one.

**Example:** VPL of two copies of Cycle (2C<sub>6</sub>)



### Theorem: 2.2

A VPG is made up of two copies of Cycle (2C<sub>h</sub>) (for all h) joining with two shared points.

#### Proof:

Let  $M_1(\mu_1) = \{u_1, u_2, \dots, u_h, u_{h+1}, u_{h+2}, \dots, u_{2h-2}\}$   
 Let  $N_1(\mu_1) = \{u_t u_{t+1} / 1 \leq t \leq h-1\} \cup \{u_1 u_h\} \cup \{u_t u_{t+1} / h \leq t \leq 2h-3\} \cup \{u_{2h-1} u_1\}$  and  $|M_1(\mu_1)| = 2h-2$ ,  $|N_1(\mu_1)| = 2h-1$ .  
 A bijection  $b_1$  is defined by  $b_1: N_1(\mu_1) \rightarrow \{1, 2, 3, \dots, (2h-1)\}$   
 Such that  $b_1(w_t) = t$ ;  $1 \leq t \leq 2h-1$

### Theorem: 2.3

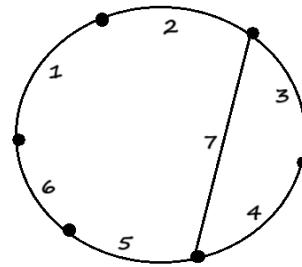
A VPG is made up of two copies of Cycle (2C<sub>h</sub>) (h is even) connected by a single line.

#### Proof:

Let  $M_1(\mu_1) = \{u_1, u_2, \dots, u_h, u_{h+1}, u_{h+2}, \dots, u_{2h}\}$   
 Let  $N_1(\mu_1) = \{u_t u_{t+1} / 1 \leq t \leq h-1\} \cup \{u_1 u_h\} \cup \{u_t u_{t+1} / h+1 \leq t \leq 2h-1\} \cup \{u_{2h} u_{h+1}\}$  and  $|M_1(\mu_1)| = 2h$ ,  $|N_1(\mu_1)| = 2h+1$ .  
 A bijection  $b_1$  is defined by  $b_1: N_1(\mu_1) \rightarrow \{1, 2, 3, \dots, (2h+1)\}$   
 Such that  $b_1(w_t) = t$ ;  $1 \leq t \leq 2h+1$

### Theorem: 2.4

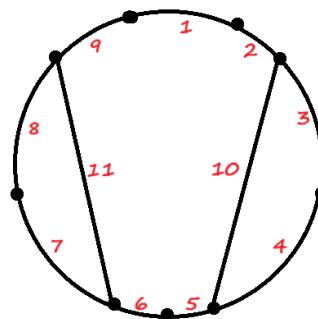
A VPG is made up of two copies of Cycle (2C<sub>h</sub>) (h is even) connected with two lines.


#### Proof:

Let  $M_1(\mu_1) = \{u_1, u_2, \dots, u_h, u_{h+1}, u_{h+2}, \dots, u_{2h}\}$   
 Let  $N_1(\mu_1) = \{u_t u_{t+1} / 1 \leq t \leq h-1\} \cup \{u_1 u_h\} \cup \{u_t u_{t+1} / h+1 \leq t \leq 2h-1\} \cup \{u_{2h} u_{h+1}\} \cup \{u_h u_{2h}\}$  and  $|M_1(\mu_1)| = 2h$ ,  $|N_1(\mu_1)| = 2h+2$ .  
 A bijection  $b_1$  is defined by  $b_1: N_1(\mu_1) \rightarrow \{1, 2, 3, \dots, (2h+2)\}$   
 Such that  $b_1(w_t) = t$ ;  $1 \leq t \leq 2h+2$ .

### Theorem: 2.5

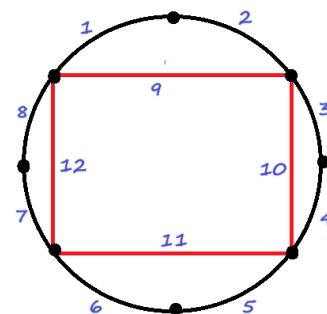
Cycle C<sub>h</sub> (for all h) single chord which is joined by the points u<sub>3</sub> and u<sub>5</sub> is a VPG.


**Example:** Cycle C<sub>6</sub> single chord is a VPG.



### Theorem: 2.6

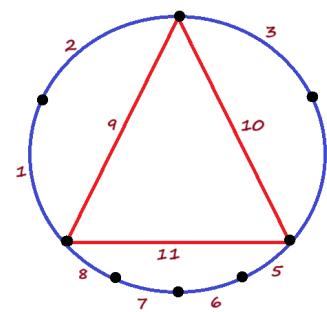
Two chords of the Cycle C<sub>h</sub> (for all h) is a VPG.


**Example:** Two chords of the Cycle C<sub>9</sub> is a VPG.



### Theorem: 2.7

Cycle C<sub>8</sub> Square is a VPG.


**Example:** Cycle C<sub>8</sub> square is a VPG.



### Theorem: 2.8

Triangle of a Cycle C<sub>8</sub> is a VPG.

**Example:** Cycle C<sub>8</sub> is a VPG.



### References

1. Gallian JA. "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinations 16 ≠ DS6, 2009.
2. Tout A, Dabboucy AN, Howalla K. "Prime Labeling of graphs", Nat. Acad. Scileters. 1982; 11:365-368.
3. Drettskyelal T. "On Vertex Prime Labeling of graphs in graphtheory", Combinatorics and applications Alari. J (Wiley. N.Y). 1991; 1:299-359.

4. Lee SM, Wui L, Yen J. "On the amalgamation of prime graphs Bull", Malaysian Math. Soc. (Second Series). 1988; 11:59-67.
5. Fu HC, Hwany KC. on Prime Labeling Discrete Math. 1994; 127:181-186.
6. Bondy JA, Murthy USR. "Graph Theory and Application" (North-Holland), Newyork, 1976.
7. Arumugam S, Ramachandran S, "Invitation to Graph Theroy" Scitech, 1994.
8. Publications (India) Pvt.Ltd.Iyyappanthagal,Chennai-600056.
9. Balakrishnan R, Ranganathan K. Text Book of Graph Theory Second Edition, Springer, New York, 2012.
10. Meena S, Vaithilingam K. "Prime Labeling for Some helm related graphs", Intern Journal of Innovative Research in Science, Engineering and Technology, 2013; 2(4).
11. Meen S, Ezhil A. "Total Prime Labeling for Some Cycle and Path related Graphs", Journal of Emerging Technologies and Innovative Research. 2019; 6(4):685-693.
12. Karunakaran V, Thenmozhi S "Prime Labeling of Two Copies of Cycle Related Graphs", International Journal of Advance Studies and Growth Evalution. 2025; 4(5):129-131.