

Edge Prime Labeling of $M(C_n)$

*¹ Ezhil A and ²Rekha D

¹ Assistant Professor, Department of Mathematics, T.K.G. Arts College, Vridhachalam, Tamil Nadu, India.

²Research Scholar, Department of Mathematics, T.K.G. Arts College, Vridhachalam, Tamil Nadu, India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 19/ May/2025

Accepted: 16/June/2025

Abstract

A Graph $G = (N, L)$ with 's' nodes and 't' lines is known as vertex prime labeling. A notation of vertex prime labeling(VPL). Line of the graphs are labeled from the set of natural numbers. If for every node of degree at least 2 the GCD(Greatest Common Divisor) of the labels on its incident line is 1. A vertex prime graph is a Graph G that allows vertex prime labeling. we discuss Multicycles are intersecting at a single node. In this paper the vertex prime labeling of Multicycle Graphs $M(C_n)$ is proved.

*Corresponding Author

Ezhil A

Assistant Professor, Department of Mathematics, T.K.G. Arts College, Vridhachalam, Tamil Nadu, India.

Keywords: Prime labeling (PL), Vertex Prime labeling (VPL), Multicycle Graph ($M(C_n)$), Path Graph (P_n), cycle (C_n) Graph.

Introduction

Consider only finite, simple and undirected graphs are taken here. $G = (N, L)$ is a graph in which the node set represented by $N(G)$ and the line set represented by $L(G)$. The terms 's', 't' stand for the graphs G's order and size, respectively. The GCD (Greatest Common Divisor) of the labels on its incident lines is one. If the lines are labeled with 't' natural numbers.

We already proved the PL of Multicycle graphs and now we have proved the VPL of the identical graphs.

We referred to J.A. Bondy and Morthy ^[1] for all other graph theory terms & symbols. Rojer Entringer created the PL notation, which was covered in a study by Tout ^[3]. Total Prime Labeling (TPL) of certain cycle and path Related Graphs have proved by S.Meena and A.Ezhil ^[4]. From the reference Mukund V. Bapat ^[5] have proved Vertex Prime Labeling of Path Related Graphs.

Definition 1.1:

Assume that G be a graph that has 's' nodes and 't' lines. A bijection $\emptyset: L(G) \rightarrow \{1, 2, 3, \dots, (s)\}$, is referred to as VPL. The GCD of labels on the incident lines of each node of degree at least two is 1.

Definition 1.2:

Path P_n having ' η ' nodes and ' $\eta - 1$ ' lines.

Definition 1.3:

A Cycle graph is a simple graph containing ' η ' nodes ($\eta \geq 3$) and ' η ' lines forming a cycle of Length ' η '.

Definition 1.4:

A graph that contains one or more cycles is considered a multicycle graph. It is denoted by $M(C_n)$. Here n represented by number of cycles and η represented by cycle length.

Main Results:**Theorem 2.1:**

Two Cycles 2(C_n) intersecting at a single node is a VPG.

Verification:

Consider G be a graph created by joining 2 cycles intersecting at a single node.

$$N(G) = \{s_1, s_2, s_3, \dots, s_{\eta}, s_{\eta+1}, \dots, s_{2\eta-1}\}$$

&

$$L(G) = \{s_i s_{i+1} / 1 \leq i \leq \eta - 1\} \cup \{s_1 s_{\eta}\} \cup \{s_1 s_{\eta+1}\} \cup \{s_i s_{i+1} / \eta + 1 \leq i \leq 2\eta - 2\} \cup \{s_1 s_{2\eta-1}\}$$

The overall nodes $s = 2\eta - 1$ and lines $t = 2\eta$

Mapping is defined by

$$\emptyset : L(G) \rightarrow \{1, 2, 3, \dots, (2\eta)\}$$

$$\emptyset(t_j) = j \text{ for } 1 \leq j \leq 2\eta$$

Based on this pattern,

$$GCD \{ \text{every lines incident with } t_1 \} = GCD \{1, \eta, \eta+1, 2\eta\} = 1$$

$$GCD \{ \text{every adjacent line incident with } t_1 \} = GCD \{j-1, j\} = 1 \text{ for } 2 \leq j \leq \eta$$

$$GCD \{ \text{every adjacent line incident with } t_1 \} = GCD \{j, j+1\} = 1 \text{ for } \eta + 1 \leq j \leq 2\eta - 1$$

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2. Therefore Graph 2(C_n) is a VPG.

Theorem 2.2:

Three Cycles 3(C_n) intersecting at a single node is a VPG.

Verification:

Consider G be a graph created by joining 3 cycles intersecting at a single node.

$$N(G) = \{s_1, s_2, s_3, \dots, s_{\eta}, s_{\eta+1}, \dots, s_{2\eta-1}, s_{2\eta}, s_{2\eta+1}, \dots, s_{3\eta-2}\}$$

&

$$L(G) = \{s_i s_{i+1} / 1 \leq i \leq \eta - 1\} \cup \{s_1 s_{\eta}\} \cup \{s_1 s_{\eta+1}\} \cup \{s_i s_{i+1} / \eta + 1 \leq i \leq 2\eta - 2\} \cup \{s_1 s_{2\eta-1}\} \cup \{s_1 s_{2\eta}\} \cup \{s_i s_{i+1} / 2\eta \leq i \leq 3\eta - 3\} \cup \{s_1 s_{3\eta-2}\}$$

The overall nodes $s = 3\eta - 2$ and lines $t = 3\eta$

Mapping is defined by

$$\emptyset : L(G) \rightarrow \{1, 2, 3, \dots, (3\eta)\}$$

$$\emptyset(t_j) = j \text{ for } 1 \leq j \leq 3\eta$$

Based on this pattern,

$$GCD \{ \text{every lines incident with } t_1 \} = GCD \{1, \eta, \eta+1, 2\eta, 2\eta+1, 3\eta\} = 1$$

$$GCD \{ \text{every adjacent line incident with } t_1 \} = GCD \{j-1, j\} = 1 \text{ for } 2 \leq j \leq \eta$$

$$GCD \{ \text{every adjacent line incident with } t_1 \} = GCD \{j, j+1\} = 1 \text{ for } \eta + 1 \leq j \leq 2\eta - 1$$

$$GCD \{ \text{every adjacent line incident with } t_1 \} = GCD \{j+1, j+2\} = 1 \text{ for } 2\eta \leq j \leq 3\eta - 2$$

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2. Therefore Graph 3(C_n) is a VPG.

Theorem 2.3:

Four Cycles 4(C_n) intersecting at a single node is a VPG.

Verification:

Suppose G be a graph created by joining 4 cycles intersecting at a single node.

$$N(G) = \{s_1, s_2, s_3, \dots, s_{\eta}, s_{\eta+1}, \dots, s_{2\eta-1}, s_{2\eta}, s_{2\eta+1}, \dots, s_{3\eta-2}, s_{4\eta-3}\}$$

&

$$L(G) = \{s_i s_{i+1} / 1 \leq i \leq \eta - 1\} \cup \{s_1 s_{\eta}\} \cup \{s_1 s_{\eta+1}\} \cup \{s_i s_{i+1} / \eta + 1 \leq i \leq 2\eta - 2\} \cup \{s_1 s_{2\eta-1}\} \cup \{s_1 s_{2\eta}\} \cup \{s_i s_{i+1} / 2\eta \leq i \leq 3\eta - 3\} \cup \{s_1 s_{3\eta-2}\} \cup \{s_1 s_{3\eta-1}\} \cup \{s_i s_{i+1} / 3\eta - 1 \leq i \leq 4\eta - 4\} \cup \{s_1 s_{4\eta-3}\}$$

The overall nodes $s = 4\eta - 3$ and lines $t = 4\eta$.

Mapping is defined by

$$\emptyset : L(G) \rightarrow \{1, 2, 3, \dots, (4\eta)\}$$

$$\emptyset(t_j) = j \text{ for } 1 \leq j \leq 4\eta$$

Based on this pattern,

$$GCD\{\text{every lines incident with } t_1\} = GCD\{1, \eta, \eta+1, 2\eta, 2\eta+1, 3\eta, 3\eta+1, 4\eta\} = 1$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j-1, j\} = 1 \text{ for } 2 \leq j \leq \eta$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j, j+1\} = 1 \text{ for } \eta+1 \leq j \leq 2\eta-1$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j+1, j+2\} = 1 \text{ for } 2\eta \leq j \leq 3\eta-2$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j+2, j+3\} = 1 \text{ for } 3\eta-1 \leq j \leq 4\eta-3$$

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2. Therefore Graph 4(C_n) is a VPG.

Theorem 2.4:

M Cycles M (C_n) intersecting at a single node is a VPG.

Verification:

Consider G be a graph created by joining M cycles intersecting at a single node.

$$N(G) = \{s_1, s_2, s_3, \dots, s_{\eta}, s_{\eta+1}, \dots, s_{2\eta-1}, s_{2\eta}, s_{2\eta+1}, \dots, s_{3\eta-2}, \dots, s_{4\eta-3}, \dots, s_{\eta(\eta-1)+1}\}$$

&

$$L(G) = \{s_1 s_{(\eta-1)\eta-(\eta-3)}\} \cup \{s_i s_{i+1} / (\eta-1)\eta - (\eta-3) \leq i \leq \eta(\eta-1)\} \cup \{s_1 s_{\eta\eta-(\eta-1)}\}$$

The overall nodes $s = \eta(\eta-1)$ and lines $t = \eta\eta$.

Mapping is defined by

$$\emptyset : L(G) \rightarrow \{1, 2, 3, \dots, (\eta\eta)\}$$

$$\emptyset(t_j) = j \text{ for } 1 \leq j \leq \eta\eta$$

Based on this pattern,

$$GCD\{\text{every lines incident with } t_1\} = GCD\{1, \eta, \eta+1, 2\eta, 2\eta+1, 3\eta, 3\eta+1, 4\eta, \dots, (\eta-1)\eta+1, \eta\eta\} = 1$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j-1, j\} = 1 \text{ for } 2 \leq j \leq \eta$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j, j+1\} = 1 \text{ for } \eta+1 \leq j \leq 2\eta-1$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j+1, j+2\} = 1 \text{ for } 2\eta \leq j \leq 3\eta-2$$

$$GCD\{\text{every adjacent line incident with } t_1\} = GCD\{j+2, j+3\} = 1 \text{ for } 3\eta-1 \leq j \leq 4\eta-3$$

Generally

$$GCD\{\text{every adjacent line incident with } t_j\} = GCD\{j + (\eta-2), j + (\eta-1)\} = 1 \text{ for } \eta(\eta-1) - \eta + 3 \leq j \leq \eta + (\eta-1)(\eta-1)$$

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2.

Therefore Graph M (C_n) is a VPG.

Theorem 2.5:

M Cycles M (C_n) intersecting at a single node @ P₁ is a VPG.

Verification:

Consider G be a graph created by joining M cycles intersecting at a single node @ P₁.

$$N(G) = \{s_1, s_2, s_3, \dots, s_{\eta}, s_{\eta+1}, \dots, s_{2\eta-1}, s_{2\eta}, s_{2\eta+1}, \dots, s_{3\eta-2}, \dots, s_{4\eta-3}, \dots, s_{\eta(\eta-1)+1}, s_{\eta(\eta-1)+2}\}$$

&

$$L(G) = \{s_1 s_{(\eta-1)\eta-(\eta-3)}\} \cup \{s_i s_{i+1} / (\eta-1)\eta - (\eta-3) \leq i \leq \eta(\eta-1)\} \cup \{s_1 s_{\eta\eta-(\eta-1)}\} \cup \{s_1 s_{(\eta+(\eta-1)(\eta-1))+1}\}$$

The overall nodes $s = \eta(\eta-1)+2$ and lines $t = \eta\eta+1$

Mapping is defined by

$$\emptyset : L(G) \rightarrow \{1, 2, 3, \dots, (\eta\eta+1)\}$$

$$\emptyset(t_j) = j \text{ for } 1 \leq j \leq \eta\eta+1$$

Based on this pattern,

$$\text{GCD}\{\text{every lines incident with } t_1\} = \text{GCD}\{1, \eta, \eta+1, 2\eta, 2\eta+1, 3\eta, 3\eta+1, 4\eta, \dots, (\eta-1)\eta+1, \eta\eta, \eta\eta+1\} = 1$$

$$\text{GCD}\{\text{every adjacent line incident with } t_1\} = \text{GCD}\{\eta-1, \eta\} = 1 \text{ for } 2 \leq \eta \leq \eta$$

$$\text{GCD}\{\text{every adjacent line incident with } t_1\} = \text{GCD}\{\eta, \eta+1\} = 1 \text{ for } \eta+1 \leq \eta \leq 2\eta-1$$

$$\text{GCD}\{\text{every adjacent line incident with } t_1\} = \text{GCD}\{\eta+1, \eta+2\} = 1 \text{ for } 2\eta \leq \eta \leq 3\eta-2$$

$$\text{GCD}\{\text{every adjacent line incident with } t_1\} = \text{GCD}\{\eta+2, \eta+3\} = 1 \text{ for } 3\eta-1 \leq \eta \leq 4\eta-3$$

Generally

$$\text{GCD}\{\text{every adjacent line incident with } t_j\} = \text{GCD}\{\eta+(\eta-2), \eta+(\eta-1)\} = 1 \text{ for } \eta(\eta-1)-\eta+3 \leq \eta \leq \eta+(\eta-1)(\eta-1)$$

$$\text{GCD}\{\text{every adjacent line incident with } t_j\} = \text{GCD}\{\eta+(\eta-2), \eta+(\eta-1)\} = 1 \text{ for } \eta(\eta-1)-\eta+3 \leq \eta \leq (\eta+(\eta-1)(\eta-1)+1)$$

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2.

Therefore Graph M (C_n) @ P_1 is a VPG.

References

1. Bondy JA, Murthy USR. Graph Theory and Applications (North-Holland), New York, 1976.
2. Gallian JA. A Dynamic Survey of Graph Labeling. *The Electronic Journal of Combinatorics*. 2011; 18(147):DS6.
3. Tout A, Dabboucy AN, Howlla K. "Prime Labeling of graphs", *Nat. Acad. Sciletters*. 1982; 11:365-368.
4. Ravi M, (a) Rama Subramanian R Kala. Total Prime Graph. *International Journal of Computational Engineering Research* (ijceronline.com), ISSN (2250-3005) online, Sep. 2012; 2(5) Page 1588-1592.
5. Meena S, Vaithilingam K. Prime Labeling for some Crown Related Graphs, *International Journal of Scientific and Technology Research*. 2013; 2(3):92-95.
6. Mukund V. Bapat. Vertex Prime Labeling of Path Related Graphs, *International Journal of Mathematics Trends and Technology* (IJMTT) ISSN: 2231-5373. 2018; 56(5).
7. Deretsky T, Lee SM, Mitchem J. On vertex prime labelings of graphs, in Graph Theory, Combinatorics and Applications Alavi, Chartrand G, Oellerman O, Schwenk A. eds., Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York, 1991; 1:359-369.
8. Vaidya SK, Udayan M Prajapati. Some Results on Prime and 'K-Prime' Labeling. *Journal of Mathematics Research*. 2011; 3(1):66-75.
9. Vaidya SK, Kanani KK. Prime Labeling for some Cycle Related Graphs. *Journal of Mathematics Research*. 2010; 2:17-20.
10. Ashok Kumar S, Maragathavalli S. Prime Labeling of Special Graphs. IOSR, *Journal of Mathematics*, (IOSR-JM). 2015; 11:1-5.
11. Vaidya SK, Udayan M. Prajapati. Some new Results on Prime Graph. *Open Journal of Discrete Mathematics*, 2012, 99-104.
12. Sandhya SS, Somasundaram S, Ponraj R. Harmonic mean labeling of some cycle related graphs. *Int. Journal of Math Analysis*. 2012; 6(40):1997-2005.
13. Meena P. Kavitha. *International Journal of Mathematical Archive*. 2014; 5(10):15-25.
14. Meena S, Ezhil A. Total prime labeling of some graphs, *International journal of research In Advent Technology Research*. 2019; 7:1.
15. Meena S, Ezhil A. Total prime labeling of some cycle and path related graphs, *Journal of Emerging Technologies and Innovative Research*. 2019; 6(4). [ISSN-2349-5162].
16. Ezhil A. Prime Labeling for some Bipartite Related Graphs, *International Journal of Mathematics and Computer Research*. 2023; 11(7):3571-3574.