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Introduction

Consider only finite, simple and undirected graphs are taken here. G = (N, L) is a graph in which the node set represented by N(G)
and the line set represented by L(G). The terms ‘s’,t” stand for the graphs G’s order and size, respectively. The GCD (Greatest
Common Divisor) of the labels on its incident lines is one. If the lines are labeled with ‘t’ natural numbers.

We already proved the PL of Multicycle graphs and now we have proved the VPL of the identical graphs.

We referred to J.A. Bondy and Morthy [!! for all other graph theory terms & symbols. Rojer Entringer created the PL notation,
which was covered in a study by Tout [*]. Total Prime Labeling (TPL) of certain cycle and path Related Graphs have proved by
S.Meena and A.Ezhil "4, From the reference Mukund V. Bapat [ have proved Vertex Prime Labeling of Path Related Graphs.

Definition 1.1:
Assume that G be a graph that has ‘s’ nodes and ‘t’ lines. A bijection @:L(G)— {1,2, 3...(s)}, is referred to as VPL. The GCD of
labels on the incident lines of each node of degree at least two is 1.

Definition 1.2:
Path P, having ‘n’ nodes and ‘g -1” lines.

Definition 1.3:
A Cycle graph is a simple graph containing ‘n’ nodes (y>3) and ‘n’ lines forming a cycle of Length ‘n’.

Definition 1.4:

A graph that contains one or more cycles is considered a multicycle graph. It is denoted by M (C,). Here m represented by number
of cycles and 1 represented by cycle length.
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Main Results:
Theorem 2.1:
Two Cycles 2(C,) intersecting at a single node is a VPG.

Verification:

Consider G be a graph created by joining 2 cycles intersecting at a single node.
N(G) = {54, 55, Sg,...... SpSy#1 e , s:q_l}

&

LO) ={ssi, /1=i=y- B U s st U{s;s U {ss5,/nH=i=2n-2} U {55, 4}

The overall nodes s =2p-1 and lines t = 2p
Mapping is defined by

0:LG) —» {123....20)}
@ (t)=jfor1=j =2y

Based on this pattern,

GCD ({every lines incident with t, } = GCD {1, n,n+1,2n} =1

GCD {every adjacent line incident with t,} =GCD {j-1,j} =1for2 <j <y

GCD {every adjacent line incident with t; } = GCD {j, j+1} =1 forp+1 < j < 2p- 1

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2.
Therefore Graph 2(C,)is a VPG.

Theorem 2.2:
Three Cycles 3(C,) intersecting at a single node is a VPG.

Verification:

Consider G be a graph created by joining 3 cycles intersecting at a single node.
N(G) = {54, 55, §5,...... SpSya1eeeee s Sap—1, 52y S 410 -Sag—2 )

&

LG) = {554/ 1=i=p- 1} U {55} U {55, } U{s;5;

a1/ TS =2p-23 U {sy 55,4} U {55, JU{5;5;,,/2n=i
=3n-3}U{s 53,2}

The overall nodes s = 31-2 and lines t = 3p
Mapping is defined by

0:LG) — {1,23....(3n)}
@ () =jfor1=j<3p

Based on this pattern,

GCD{every lines incident with t, } = GCD {1,n,9+1, 2n, 29 +1, 3n} = 1

GCD {every adjacent line incident with t,; } = GCD {j-1,j} =1 for2 <j =<y

GCD {every adjacent line incident with t,;} = GCD {j,j+1} =1forn+1 <j=2p-1
GCD {every adjacent line incident with t; } = GCD {j+1,j+2} =1 for2n = j=3p-2

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2.
Therefore Graph 3(C,) is a VPG.

Theorem 2.3:
Four Cycles 4(C,) intersecting at a single node is a VPG.

Verification:

Suppose G be a graph created by joining 4 cycles intersecting at a single node.
N(G) = {54, 53, 5g,...... SppSgetoreeee s Sag—1 Sogs Sogaare---Sag—aeeoe s4q_3}
&

L(G) = {s854/ 1= i < pn -1} U {s15y) U {54544} VU {5;5,2¢/ 0 t1= i < 2y - 2} U {51501} Y
{sls:q}U{s-+s-+1/213£i£3 1 —3}U{5153q_:}U{slsaq_l}U{s-is-HlBg -1= i=l4y -4}U{sls4q_3}

¥
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The overall nodes s = 41-3 and lines t = 4.
Mapping is defined by

@:LG)—>  {1.23.... (4n)}
D () =jfor1=j=4dy

Based on this pattern,

GCD {every lines incident with t, } = GCD {1, n, g +1, 21, 2n+1,37, 3n+1,4n} = 1
GCD {every adjacent line incident with t; } = GCD {j-1,j} =1 for2 <j =<y
GCD/{every adjacent line incident with t; } = GCD {j,j+1} =1 forp+1 = j < 2p- 1
GCD {every adjacent line incident with t; } = GCD {j+1,j+2} =1 for 2n = j = 3p- 2
GCD {every adjacent line incident with t; } = GCD {j+2,j+3} = 1 for 3p-1 = j <4p-3

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2.
Therefore Graph 4(C,) is a VPG.

Theorem 2.4:
M Cycles M (C,) intersecting at a single node is a VPG.

Verification:

Consider G be a graph created by joining M cycles intersecting at a single node.

N(G) = {54, 55, 55,...... SpSya1 oo s Sap—1 52y Sag 410 -Sag—20-- - Sag—3> Sy (g—1)41
&

L(G) :{Slgl:n]—l}q—l:n]—ﬂ::l}U{S{.S{.+1 /( m _1) - (n:l _3) £1 E m (1:] _1)} U{Slsn]q—l:n]—j_}}

The overall nodes s =117 ( - 1) and lines t = my.
Mapping is defined by
0 :LG) —> {1,2,3....(mn)}

@ (t) =] for 15§ = np

Based on this pattern,

GCD {every lines incident with t, } = GCD {1, n, g+1, 2n, 2p+1, 3, 39+1,4y .... (m -1y +1, Wy} =1
GCD {every adjacent line incident with t,} =GCD {j-1,j} =1for2 <j <y

GCD {every adjacent line incident with t; } = GCD {j,j+1} =1 forn+1 = j = 2p- 1

GCD {every adjacent line incident with t; } = GCD {j+1,j+2} =1 for2n = j = 3p-2

GCD {every adjacent line incident with t; } = GCD {j+2,j+3} =1 for3n-1 =j < 4n-3

Generally
GCD {every adjacent line incident with t;} = GCD {j+( m -2), j+(m -1)} =1 form (n-1)-p +3 = i = pHm-1)©n-1)

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2.
Therefore Graph M () is a VPG.

Theorem 2.5:
M Cycles M (C,) intersecting at a single node @ P; is a VPG.

Verification:
Consider G be a graph created by joining M cycles intersecting at a single node @ P;.

N(G) = {54, 53, S3,-.- SppSya1>- Sag_1,Sogs Sags1r-Sag—2>--Sag_ 3> Sy (g—1)41-m(g—1)+2 )
&
L(G):{ S]_'gl:n]—1}q—|:n]—3}}u{s{.si.+1 /( I]J _1)13_( n:l _3) Ei E n:l (1:]_1)} U{ Slsn]q—|:n]—1:|}u{Slslzq+|:n]—1:||:|_'_|—1:|:|+1}

The overall nodes s = 117 (y-1)+2 and lines t = 117 n+1
Mapping is defined by

D:LG) — {1,23....(mp+D)}

@ (t;) =] for 1<j =mp+1
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Based on this pattern,

GCD {every lines incident with t, } = GCD {1, n, n+1, 21, 29 +1, 39, 39+1, 4y,.... (m -1)y +1, my, my +1} =1
GCD {every adjacent line incident with t,; } = GCD {j-1,j} =1for2 <j =<y

GCD {every adjacent line incident with t, } = GCD {j, j+1} =1 forp+1 = j < 2p-1

GCD {every adjacent line incident with t; } = GCD {j+1, j+2} =1 for 2n = j = 3n -2

GCD {every adjacent line incident with t, } = GCD {j+2,j+3} =1 for 3n-1 =< j < 4n-3

Generally
GCD {every adjacent line incident with t;} = GCD {j+(1m -2), j*(m -1)} = 1 for m) (p-1)-p+3 = i=or(m-Dxn-1)
GCD {every adjacent line incident with t;} = GCD {j+(m -2), j+(m -1)} = 1 for m (p-1)-9+3 = i = (@+(m-D(n-1)+1)

Consequently every incident lines have a GCD that is 1, associated with every node of degree at least 2.
Therefore Graph M (C,) @ P, is a VPG.
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