

Prime Labeling of Two Copies of Cycle Related Graphs

*¹ Thenmozhi S and ²Karunakaran V

*^{1,2} Assistant Professor, Department of Mathematics, T.K.G.Arts College, Vridhachalam, Tamil Nadu, India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 18/April/2025

Accepted: 20/May/2025

Abstract

If a graph $G = (V, E)$ with 'r' vertices, and its vertices are named by unique positive integers not greater than n, then every pair of adjacent vertices is relatively prime. A graph that admits prime numbers is called a prime graph (PG). Graph labeling (GL) is an important area of research in Graph theory. There are many kinds of graph labeling such as Graceful labeling, Magic labeling, Prime labeling, and other different labeling techniques. In this paper, we discuss the primes of two copies of a Cyclic graph (CG). We also discuss the primes of some graph functions and the paths between two graphs.

*Corresponding Author

Thenmozhi S

Assistant Professor, Department of Mathematics, T.K.G.Arts.College, Vridhachalam, Tamil Nadu, India.

Keywords: Prime labeling, Cycle, Path.

Introduction

In this paper, we consider only a finitely simple undirected graph. The graph G has a set of vertices $V = V(G)$ and an edge set $E = E(G)$. References and terminology are given by Pandy and Moorthy [6].

The concept of prime labeling (PL) was introduced by Roger Entringer and discussed in a paper by Dowd.A (1982 P 365-368) [2].

Tereski.D (1991 P 359-369) [3] proved that the cyclic graph C_r on r vertices is a PG. Lee.S (1998 P 59-67) [4] proved that n is a PG while Meena.S and Vaithilingam.) K proved that the Helm H_n graph is a PG (2013 P 1075-1085) [9]. Meena.S and Ezhil.A proved that the cyclic C_r and path P_r graph is a total prime graph (2019 P 685-693) [10]. We refer to [11] Kalyan. J.A. (2009) for a recent dynamic survey on graph labeling.

Two integers a and b are said to be relatively prime if their greatest common divisor is one. Relative primes play an important role in both analysis and algebraic number theory. Many researchers have studied PG. For example, Fu. H (1994 P 181-186) [5] proved that the path P_r on r vertices is a PG.

Definition: 1.1

Labeling a graph is the process of assigning integers to vertices or edges, or both, subject to certain conditions.

Definition: 1.2

Let $G = (V(G), E(G))$ be a graph with 'r' vertices and 'd' edges. If for every edge $e=uv$, $\text{Gcd}\{\Gamma(u), \Gamma(v)\}=1$, then the isosymmetric $\Gamma: V(G) \rightarrow \{1, 2, \dots, c\}$ is called a prime labeling (PL). A graph that admits a PL is called a prime Graph (PG).

Definition: 1.3

A simple graph with r vertices ($r \geq 3$) and d edges that forms a cycle of length r is called a C_r Cycle graph (CG).

Definition: 1.4

The path P_r has r vertices and $r-1$ edges.

Main Results: 2

Theorem: 2.1

Two copies of CG C_r joining a single common vertex (for all r) is a PG.

Proof:

Let G be a graph consisting two copies of CG C_r joining a single common vertex. Let $V(G) = \{v_k v_{k+1} \mid 1 \leq k \leq r-1\} \cup \{v_r v_1\} \cup \{v_1 v_{r+1}\} \cup \{v_k v_{k+1} \mid r+1 \leq k \leq 2r-2\} \cup \{v_{2r-1} v_1\}$ and $|V(G)| = 2r-1$

A bijection Γ is defined by $\Gamma: V(G) \rightarrow \{1, 2, 3, \dots, (2r-1)\}$ such that $\Gamma(v_k) = k$; $1 \leq k \leq 2r-1$

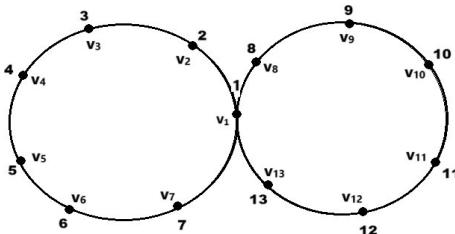
i) $\text{Gcd}\{\Gamma(v_k), \Gamma(v_{k+1}) \mid 1 \leq k \leq r-1\} = 1$

ii) $\text{Gcd} \{ \Gamma(vr), \Gamma(v1) \} = 1$
 iii) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \} \text{ for } r+1 \leq k \leq 2r-2 = 1$ iv) $\text{Gcd} \{ \Gamma(v2r-1), \Gamma(v1) \} = 1$

Hence Γ agrees with the PL.

Therefore \mathbf{G} is PG.

Example: PL of two copies of CG C7



Theorem: 2.2

Two copies of CG Cr joining with two common vertices (for all r) is a PG.

Proof:

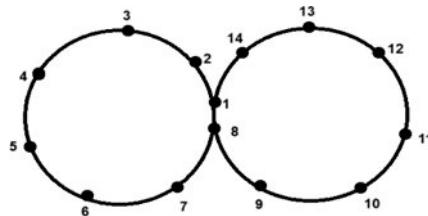
Let \mathbf{G} be a graph with two copies of CG Cr joining with two common vertices. Let $V(\mathbf{G}) = \{ v_{vk} \mid 1 \leq k \leq r-1 \} \cup \{ v_{1vr} \} \cup \{ v_{vk+1} \mid r \leq k \leq 2r-3 \} \cup \{ v_{2r-2v1} \}$ and $|V(\mathbf{G})| = 2r-2$.

A bijection Γ is defined by $\Gamma: V(\mathbf{G}) \rightarrow \{ 1, 2, 3, \dots, (2r-2) \}$ such that $\Gamma(vk) = k$; $1 \leq k \leq 2r-2$

i) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid 1 \leq k \leq r-1 \} = 1$
 ii) $\text{Gcd} \{ \Gamma(v1), \Gamma(vr) \} = 1$
 iii) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid r \leq k \leq 2r-3 \} = 1$ iv) $\text{Gcd} \{ \Gamma(v2r-2), \Gamma(v1) \} = 1$

Hence Γ agrees with the PL. Therefore \mathbf{G} is PG.

Example: PG of two copies of CG C8



Theorem: 2.3

Two Copies of CG Cr joining a single edge (for all r, r is even) is a PG.

Proof:

Let \mathbf{G} be a graph with two copies of CG Cr joining a single common edge.

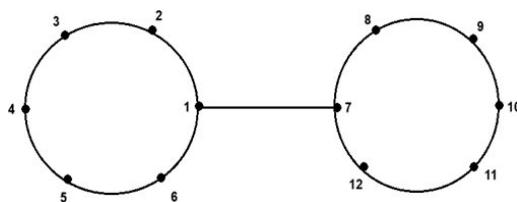
Let $V(\mathbf{G}) = \{ v_{vk} \mid 1 \leq k \leq r-1 \} \cup \{ v_{rv1} \} \cup \{ v_{1vr+1} \} \cup \{ v_{vk+1} \mid r+1 \leq k \leq 2r-1 \} \cup \{ v_{2r-2v1} \}$ and $|V(\mathbf{G})| = 2r$

A bijection Γ is defined by $\Gamma: V(\mathbf{G}) \rightarrow \{ 1, 2, 3, \dots, 2r \}$ such that $\Gamma(vk) = k$; $1 \leq k \leq 2r$

i) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid 1 \leq k \leq r-1 \} = 1$
 ii) $\text{Gcd} \{ \Gamma(vr), \Gamma(v1) \} = 1$
 iii) $\text{Gcd} \{ \Gamma(v1), \Gamma(vr+1) \} = 1$
 iv) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid r+1 \leq k \leq 2r-1 \} = 1$ v) $\text{Gcd} \{ \Gamma(v2r), \Gamma(vr+1) \} = 1$

Hence Γ agrees with the PL. Therefore \mathbf{G} is PG.

Example: PG of two copies of CG C6.



Theorem: 2.4

Two Copies of CG Cr joining with two edges (for all r, r is even) is a PG.

Proof:

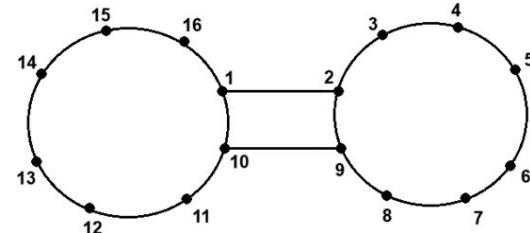
Let \mathbf{G} be a graph with two copies of CG Cr joining two edges. Let $V(\mathbf{G}) = \{ v_{vk} \mid 2 \leq k \leq r-1 \} \cup \{ v_{r+1v2} \} \cup \{ v_{2rv1} \} \cup \{ v_{r+1v2} \} \cup \{ v_{1v2} \} \cup \{ v_{1v2} \} \cup \{ v_{2r-2v1} \} \text{ and } |V(\mathbf{G})| = 2r$.

A bijection Γ is defined by $\Gamma: V(\mathbf{G}) \rightarrow \{ 1, 2, 3, \dots, 2r \}$ such that $\Gamma(vk) = k$; $1 \leq k \leq 2r$.

i) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid 2 \leq k \leq r-1 \} = 1$
 ii) $\text{Gcd} \{ \Gamma(vr+1), \Gamma(v2) \} = 1$
 iii) $\text{Gcd} \{ \Gamma(v2r), \Gamma(v1) \} = 1$ iv) $\text{Gcd} \{ \Gamma(vr+1), \Gamma(vr+2) \} = 1$
 v) $\text{Gcd} \{ \Gamma(v1), \Gamma(v2) \} = 1$
 vi) $\text{Gcd} \{ \Gamma(v1), \Gamma(vr+2) \} = 1$
 vii) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid r+2 \leq k \leq 2r-1 \} = 1$ Hence Γ agrees with the PL.

Therefore \mathbf{G} is PG.

Example: PG of two copies of CG C8.



Theorem: 2.5

Chord (single) of CG Cr (for all r) is a PG.

Proof:

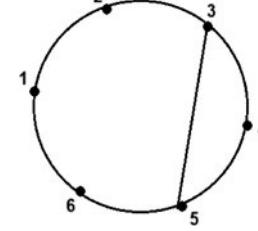
Let \mathbf{G} be a CG Cr with single chord.

Let $V(\mathbf{G}) = \{ v_{vk} \mid 1 \leq k \leq r-1 \} \cup \{ v_{3v5} \}$ and $|V(\mathbf{G})| = r$. A bijection Γ is defined by $\Gamma: V(\mathbf{G}) \rightarrow \{ 1, 2, 3, \dots, r \}$ such that $\Gamma(vk) = k$; $1 \leq k \leq r$.

i) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid 1 \leq k \leq r-1 \} = 1$
 ii) $\text{Gcd} \{ \Gamma(vr), \Gamma(v1) \} = 1$
 iii) $\text{Gcd} \{ \Gamma(vr), \Gamma(v5) \} = 1$ Hence Γ agrees with the PL.

Therefore \mathbf{G} is PG.

Example: PG of chord of CG C6.



Theorem: 2.6

Chord (two) of CG Cr (for all r) is a PG.

Proof:

Let \mathbf{G} be a CG Cr with double chord.

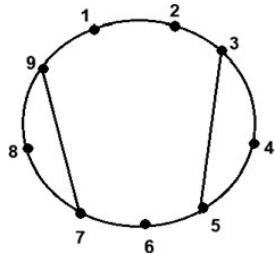
Let $V(\mathbf{G}) = \{ v_{vk} \mid 1 \leq k \leq r-1 \} \cup \{ v_{rv1} \} \cup \{ v_{3v5} \} \cup \{ v_{7v9} \}$ and $|V(\mathbf{G})| = r$.

A bijection Γ is defined by $\Gamma: V(\mathbf{G}) \rightarrow \{ 1, 2, 3, \dots, r \}$ such that $\Gamma(vk) = k$; $1 \leq k \leq r$.

i) $\text{Gcd} \{ \Gamma(vk), \Gamma(vk+1) \mid 1 \leq k \leq r-1 \} = 1$
 ii) $\text{Gcd} \{ \Gamma(vr), \Gamma(v1) \} = 1$
 iii) $\text{Gcd} \{ \Gamma(v3), \Gamma(v5) \} = 1$ iv) $\text{Gcd} \{ \Gamma(v7), \Gamma(v9) \} = 1$

Hence Γ agrees with the PL. Therefore G is PG.

Example: PG of chord (two) of CG C9.



Theorem: 2.7

Square of CG C8 is a PG.

Proof:

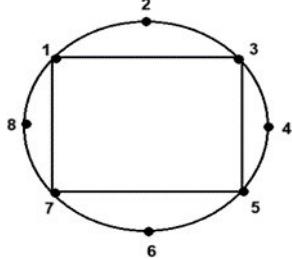
Let G be a CG C8 which contains inside square it is obtained by joining four vertices by an edge randomly.

Let $V(G) = \{ v_{k}v_{k+1} / 1 \leq k \leq 7 \} \cup \{ v_{2k-1}v_{2k+1} / 1 \leq k \leq 3 \} \cup \{ v_7v_1 \}$ and $|V(G)| = 8$ A bijection Γ is defined by $\Gamma: V(G) \rightarrow \{1,2,3,\dots,8\}$ such that $\Gamma(v_k) = k ; 1 \leq k \leq 8$

- i) $\text{Gcd}\{\Gamma(v_k), \Gamma(v_{k+1}) / 1 \leq k \leq 7\} = 1$
- ii) $\text{Gcd}\{\Gamma(v_{2k-1}), \Gamma(v_{2k+1}) / 1 \leq k \leq 3\} = 1$
- iii) $\text{Gcd}\{\Gamma(v_7), \Gamma(v_1)\} = 1$ Hence Γ agrees with the PL.

Therefore G is PG.

Example: PG of square of CG C8.



Theorem: 2.8

Triangle of CG is PG.

Proof:

Let G be a CG C8 which contains inside the triangle it is obtained by joining three vertices by an edge randomly.

Let $V(G) = \{ v_{k}v_{k+1} / 1 \leq k \leq 7 \} \cup \{ v_{2k-1}v_{2k+1} / 1 \leq k \leq 2 \} \cup \{ v_5v_1 \} \cup \{ v_8v_1 \}$ and $|V(G)| = 8$ A bijection Γ is defined by $\Gamma: V(G) \rightarrow \{1,2,3,\dots,8\}$ such that $\Gamma(v_k) = k ; 1 \leq k \leq 8$

- i) $\text{Gcd}\{\Gamma(v_k), \Gamma(v_{k+1}) / 1 \leq k \leq 7\} = 1$
- ii) $\text{Gcd}\{\Gamma(v_{2k-1}), \Gamma(v_{2k+1}) / 1 \leq k \leq 2\} = 1$
- iii) $\text{Gcd}\{\Gamma(v_8), \Gamma(v_1)\} = 1$ iv) $\text{Gcd}\{\Gamma(v_5), \Gamma(v_1)\} = 1$

Hence Γ agrees with the PL.

Therefore G is PG.

Example: PG of triangle of CG C8.

References

1. Gallian JA. A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinations 16 ≠ DS6, 2009.
2. Tout A, Dabboucy AN, Howalla K. "Prime Labeling of graphs", Nat. Acad. Sciletters. 1982; 11:365-368.
3. Dretskyal T. "On Vertex Prime Labeling of graphs in graphtheory", Combinatorics and applications Alari. J (Wiley. N.Y). 1991; 1"299-359.
4. Lee SM, Wui L, Yen J. "On the amalgamation of prime graphs Bull", Malaysian Math. Soc. (Second Series). 1988; 11:59-67.
5. Fu HC, Hwany KC. on Prime Labeling Discrete Math. 1994; 127:181-186.
6. Bondy JA, U.S.R. Murthy, Graph Theory and Application (North-Holland), Newyork, 1976.
7. Arumugam S, Ramachandran S. Invitation to Graph Theroy Scitech Publications (India) Pvt.Ltd. Iyyappanthalgal, Chennai-600056.
8. Balakrishnan R, Ranganathan K. Text Book of Graph Theory Second Edition, Springer, Newyork, 2012.
9. Meena S, Vaithilingam K. Prime Labeling for Some helm related graphs, Intern Journal of Innovative Research in Science, Engineering and Technology. 2013; 2(4).
10. Meen S, Ezhil A. "Total Prime Labeling for Some Cycle and Path related Graphs", Journal of Emerging Technologies and Innovative Research. 2019; 6(4):685-693.