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Abstract
If a graph Ǥ = (V, E) with 'r' vertices, and its vertices are named by unique positive integers
not greater than n, then every pair of adjacent vertices is relatively prime. A graph that
admits prime numbers is called a prime graph (PG).Graph labeling (GL) is an important area
of research in Graph theory. There are many kinds of graph labeling such as Graceful
labelingꓹ Magic labelingꓹ Prime labelingꓹ and other differend labeling techniques. In this
paper, we discuss the primes of two copies of a Cyclic graph (CG). We also discuss the
primes of some graph functions and the paths between two graphs.
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Introduction
In this paper, we consider only a finitely simple undirected
graph. The graph Ǥ has a set of vertices V = V(Ǥ) and an
edge set E = E(Ǥ). References and terminology are given by
Pandy and Moorthy [6].
The concept of prime labeling (PL) was introduced by Roger
Entringer and discussed in a paper by Dowd.A (1982 P 365-
368) [2].
Tereski.D (1991 P 359-369) [3] proved that the cyclic graph Cr
on r vertices is a PG. Lee.S (1998 P 59-67) [4] proved that n is
a PG while Meena.S and Vaithilingam.) K proved that the
Helm Hn graph is a PG (2013 P 1075-1085) [9]. Meena.S and
Ezhil.A proved that the cyclic Cr and path Pr graph is a total
prime graph (2019 P 685-693) [10]. We refer to [1] Kalyan. J.A.
(2009) for a recent dynamic survey on graph labeling.
Two integers a and b are said to be relatively prime if their
greatest common divisor is one. Relative primes play an
important role in both analysis and algebraic number theory.
Many researchers have studied PG. For example, Fu. H (1994
P 181-186) [5] proved that the path Pr on r vertices is a PG.

Definition: 1.1
Labeling a graph is the process of assigning integers to
vertices or edges, or both, subject to certain conditions.

Definition: 1.2
Let Ǥ = (V(Ǥ)ꓹE(Ǥ)) be a graph with ‘r’ vertices and ‘d’
edges. If for every edge e=uvꓹ Gcd{Ꞙ(u) ꓹ Ꞙ(v)}=1ꓹ then the
isosymmetric Ꞙ:V(Ǥ)→{1ꓹ2ꓹ…..ꓹc}is called a prime labeling
(PL).A graph that admits a PL is called a prime Graph (PG).

Definition: 1.3
A simple graph with r vertices (r ≥ 3) and d edges that forms a
cycle of length r is called a Cr Cycle graph (CG).

Definition: 1.4
The path Pr has r vertices and r-1 edges.
Main Results: 2
Theorem: 2.1
Two copies of CG Cr joining a single common vertex (for all
r) is a PG.
Proof:
Let Ǥ be a graph consisting two copies of CG Cr joining a
single common vertex. Let V(Ǥ) = { vkvk+1 ̸ 1 ≤ k ≤ r-1 } ꓴ
{ vrv1 } ꓴ { v1vr+1 } ꓴ{ vkvk+1 ̸ r+1 ≤ k ≤ 2r-2}ꓴ { v2r-1v1 } and
|V(Ǥ) | = 2r-1
A bijection Ꞙis defined by Ꞙ:V(Ǥ) → {1ꓹ 2ꓹ 3ꓹ…..(2r-1)}
such that Ꞙ(vk) = k ; 1 ≤ k ≤ 2r-1
i) Gcd { Ꞙ(vk)ꓹ Ꞙ(vk+1) ̸ 1 ≤ k ≤ r-1} = 1
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ii) Gcd { Ꞙ(vr) ꓹ Ꞙ(v1) } = 1
iii) Gcd { Ꞙ(vk) ꓹ Ꞙ(vk+1) ̸ r+1 ≤ k ≤ 2r-2} = 1 iv) Gcd

{ Ꞙ(v2r-1) ꓹ Ꞙ(v1) } = 1
Hence Ꞙagrees with the PL.
Therefore Ǥ is PG.
Example: PL of two copies of CG C7

Theorem: 2.2
Two copies of CG Cr joining with two common vertices (for
all r) is a PG.
Proof:
Let Ǥ be a graph with two copies of CG Cr joining with two
common vertices. Let V(Ǥ) = { vkvk+1 / 1 ≤ k ≤ r-1 } ꓴ
{ v1vr } U { vkvk+1 / r ≤ k ≤ 2r-3 } U { v2r-2v1 } and |V(Ǥ)|
= 2r-2.
A bijection Ꞙis defined by Ꞙ: V(Ǥ) → { 1ꓹ2ꓹ3ꓹ…..(2r-2) }
such tha Ꞙ(vk) = k ; 1 ≤ k ≤ 2r-2
i) Gcd { Ꞙ(vk) ꓹ Ꞙ(vk+1) / 1 ≤ k ≤ r-1 } = 1
ii) Gcd { Ꞙ(v1) ꓹ Ꞙ(vr) } = 1
iii) Gcd { Ꞙ(vk) ꓹ Ꞙ(vk+1) / r ≤ k ≤ 2r-3 } = 1 iv) Gcd

{ Ꞙ(v2r-2) ꓹ Ꞙ(v1) } = 1
Hence Ꞙ agrees with the PL. Therefore Ǥ is PG.
Example: PG of two copies of CG C8

Theorem: 2.3
Two Copies of CG Cr joining a single edge (for all r ꓹ r is
even) is a PG.
Proof:
Let Ǥ be a graph with two copies of CG Cr joining a single
common edge.
Let V(Ǥ) ={ vkvk+1 / 1 ≤ k ≤ r-1} U { vrv1 } U { v1vr+1 } U
{ vkvk+1 / r+1 ≤ k ≤ 2r-1 } U { v2rvr+1 } and |V(Ǥ)| = 2r
A bijection Ꞙ is defined by Ꞙ : V(Ǥ) → {1ꓹ2ꓹ3ꓹ…….2r} such
that Ꞙ (vk) = k ; 1 ≤ k ≤ 2r
i) Gcd {Ꞙ (vk) ꓹ Ꞙ (vk+1) / 1 ≤ k ≤ r-1} = 1
ii) Gcd { Ꞙ (vr) ꓹ Ꞙ (v1) } = 1
iii) Gcd { Ꞙ (v1) ꓹ Ꞙ (vr+1) } = 1
iv) Gcd { Ꞙ (vk) ꓹ Ꞙ(vk+1) / r+1 ≤ k ≤ 2r-1 } = 1 v) Gcd { Ꞙ

(v2r) ꓹ Ꞙ (vr+1) } = 1
Hence Ꞙ agrees with the PL Therefore Ǥ is PG.
Example: PG of two copies of CG C6.

Theorem: 2.4
Two Copies of CG Cr joining with two edges (for all r ꓹ r is
even) is a PG.
Proof:
Let Ǥ be a graph with two copies of CG Cr joining two edges.
Let V(Ǥ) = { vkvk+1 / 2 ≤ k ≤ r-1 } U { vr+1v2 } U
{ v2rv1}ꓴ{vr+1vr+2}ꓴ{v1v2}ꓴ{v1vr+2}ꓴ{vkvk+1 ̸ r+2 ≤
k ≤ 2r-1} and |V(Ǥ)|=2r.
A bijection Ꞙ is defined by Ꞙ : V(Ǥ) → { 1ꓹ2ꓹ3ꓹ……2r } such
that Ꞙ (vk) = k ; 1 ≤ k ≤ 2r.
i) Gcd { Ꞙ (vk) ꓹꞘ (vk+1) / 2 ≤ k ≤ r-1 } = 1
ii) Gcd { Ꞙ (vr+1) ꓹ Ꞙ (v2) } = 1
iii) Gcd { Ꞙ (v2r) ꓹ Ꞙ (v1) } = 1 iv) Gcd { Ꞙ(vr+1)ꓹꞘ(vr+2) }

=1 v) Gcd { Ꞙ (v1)ꓹꞘ(v2)} =1
iv) Gcd { Ꞙ(v1)ꓹꞘ(vr+2)}=1
v) Gcd { Ꞙ(vk)ꓹꞘ(vk+1) ̸ r+2 ≤ k ≤ 2r-1}=1 Hence Ꞙagrees

with the PL.
Therefore Ǥ is PG.
Example: PG of two copies of CG C8.

Theorem: 2.5
Chord (single) of CG Cr (for all r) is a PG.
Proof:
Let Ǥ be a CG Cr with single chord.
Let V(Ǥ) = {vkvk+1 / 1 ≤ k ≤ r-1} ꓴ {v3v5} and |V(Ǥ)| = r.
A bijection Ꞙis defined by Ꞙ: V (Ǥ) → { 1ꓹ2ꓹ3ꓹ…..r } such
that Ꞙ(vk) = k ; 1 ≤ k ≤ r.
i) Gcd { Ꞙ(vk) ꓹ Ꞙ (vk+1) / 1 ≤ k ≤ r-1 } = 1
ii) Gcd { Ꞙ(vr) ꓹ Ꞙ(v1) } = 1
iii) Gcd { f(vr) ꓹ Ꞙ (v5) } = 1 Hence Ꞙagrees with the PL
Therefore Ǥ is PG.
Example: PG of chord of CG C6.

Theorem: 2.6
Chord (two) of CG Cr (for all r) is a PG.

Proof:
Let Ǥ be a CG Cr with double chord.
Let V(Ǥ) = { vkvk+1 / 1 ≤ k ≤ r-1} U {vrv1} U {v3v5} U
{v7v9} and |V(Ǥ)| = r.
A bijection Ꞙ is defined by Ꞙ : V (Ǥ) → { 1ꓹ2ꓹ3ꓹ…..r } such
that Ꞙ (vk) = k ; 1 ≤ k ≤ r.
i) Gcd { Ꞙ (vk) ꓹ Ꞙ (vk+1) / 1 ≤ k ≤ r-1 } = 1
ii) Gcd { Ꞙ (Vr) ꓹꞘ (v1) } = 1
iii) Gcd { Ꞙ (v3) ꓹ Ꞙ (v5) } = 1 iv) Gcd { Ꞙ (v7) ꓹ Ꞙ (v9) }=1
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Hence Ꞙ agrees with the PL Therefore Ǥ is PG.
Example: PG of chord (two) of CG C9.

Theorem: 2.7
Square of CG C8 is a PG.
Proof:
Let Ǥ be a CG C8 which contains inside square it is obtained
by joining four vertices by an edge randomly.
Let V(Ǥ) = { vkvk+1 / 1 ≤ k ≤ 7 } U { v2k-1v2k+1 / 1 ≤ k ≤
3 } U { v7v1 } and |V(Ǥ)| = 8 A bijection Ꞙ is defined by Ꞙ :
V (Ǥ) → {1ꓹ2ꓹ3ꓹ…..8} such that Ꞙ(vk) = k ; 1 ≤ k ≤ 8
i) Gcd {Ꞙ(vk) ꓹ Ꞙ(vk+1) / 1 ≤ k ≤ 7 } = 1
ii) Gcd { Ꞙ(v2K-1) ꓹ Ꞙ(v2K+1) / 1 ≤ K ≤ 3 } = 1
iii) Gcd { Ꞙ(v7)ꓹ Ꞙ(v1) } = 1 Hence Ꞙagrees with the PL.
Therefore Ǥ is PG.
Example: PG of square of CG C8.

Theorem: 2.8
Triangle of CG is PG.
Proof:
Let Ǥ be a CG C8 which contains inside the triangle it is
obtained by joining three vertices by an edge randomly.
Let V(Ǥ) = { vkvk+1 / 1 ≤ k ≤ 7 } ꓴ { v2k-1v2k+1 / 1 ≤ k ≤
2} U { v5v1 } U { v8v1 } and |V(Ǥ)| = 8 A bijection Ꞙ is
defined by Ꞙ: V (Ǥ) → { 1ꓹ2ꓹ3ꓹ…..8 } such that Ꞙ(vk) = k ; 1
≤ k ≤ 8
i) Gcd { Ꞙ(vk)ꓹ Ꞙ(vk+1) / 1 ≤ k ≤ 7 } = 1
ii) Gcd { Ꞙ(v2k-1)ꓹ Ꞙ(v2k+1) / 1 ≤ k ≤ 2 } = 1
iii) Gcd { Ꞙ(v8)ꓹ Ꞙ(v1) } = 1 iv) Gcd { Ꞙ(v5)ꓹ Ꞙ(v1) } = 1

Hence Ꞙagrees with the PL.
Therefore Ǥ is PG.
Example: PG of triangle of CG C8.
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