

The Digital Frontier in Agriculture: Exploring Cyber Extension Adoption and Research Gaps

*¹ Dr. Varsha Parikh and ²Amlan Jyoti Thakur

¹ Associate Professor, Department of Extension and Communication, Faculty of Family and Community Sciences, the Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.

² Ex-Post Graduate, Department of Extension and Communication, Faculty of Family and Community Sciences, the Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 19/April/2025

Accepted: 26/May/2025

Abstract

This narrative article reviews the existing literature on "cyber extension" in agricultural services, with a specific focus on the application of the Technology Acceptance Model (TAM) framework. It examines how ICTs are integrated into agricultural extension, particularly within Krishi Vigyan Kendras (KVKs) in India (with an emphasis on Assam) and among agricultural experts globally. The review highlights key conceptual and empirical findings, identifies prevailing research trends, compares and contrasts various studies, and delineates significant research gaps. The objective is to provide a comprehensive understanding of the current state of cyber extension adoption, its challenges, and its potential, ultimately proposing a way forward for more effective implementation and research.

*Corresponding Author

Dr. Varsha Parikh

Associate Professor, Department of Extension and Communication, Faculty of Family and Community Sciences, the Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.

Keywords: Cyber extension, agriculture, Krishi Vigyan Kendras, India.

1. Introduction

The agricultural landscape has undergone a significant transformation in recent decades, driven by the imperative to enhance productivity, efficiency, and sustainability. A pivotal aspect of this evolution is the integration of Information and Communication Technologies (ICTs) into agricultural extension services, leading to the emergence of what is widely known as "cyber extension." This paradigm shift leverages online networks, computer communications, and digital interactive multimedia to bridge connectivity barriers between diverse stakeholders, including farmers, researchers, marketers, and animal production specialists. Cyber extension aims to empower rural communities by facilitating timely dissemination of crucial, location-specific information, thereby revolutionizing traditional extension methods.

This article provides a comprehensive review of the literature on cyber extension in agriculture, drawing insights from both conceptual and empirical studies conducted within and

outside India. A particular emphasis is placed on the Technology Acceptance Model (TAM) framework, which offers a robust lens through which to understand the factors influencing the adoption and utilization of new technologies. By synthesizing existing knowledge, this review seeks to illuminate the progress made, the challenges encountered, and the persistent gaps in research concerning cyber extension, particularly in the context of Krishi Vigyan Kendras (KVKs) in India and among global agricultural experts.

2. Objective

The primary objective of this narrative article is to:

- Synthesize the current understanding of cyber extension in agriculture, encompassing its conceptual foundations and empirical applications.
- Analyze the role and impact of ICTs in agricultural extension services, with a focus on KVKs in India and international contexts.

- Examine the applicability and findings related to the Technology Acceptance Model (TAM) in predicting and explaining the adoption of cyber extension by agricultural stakeholders.
- Identify key research trends, commonalities, and divergences across various studies on cyber extension.
- Highlight significant research gaps in the existing literature to guide future research endeavors.
- Propose a way forward for enhancing the effectiveness and widespread adoption of cyber extension in agricultural settings.

3. Methodology

This narrative article is based on a comprehensive review of existing literature, drawing primarily from the provided Word document, "Revised Amlan RoL7thfeb24.docx." The methodology involved systematically extracting and synthesizing information from the conceptual and empirical reviews presented in the document.

3.1 Inclusion Criteria

- **Relevance to Cyber Extension:** Studies directly addressing the concept, implementation, impact, or challenges of "cyber extension" in agriculture.
- **Focus on ICTs in Agriculture:** Research exploring the use of various Information and Communication Technologies (ICTs) in agricultural extension services.
- **Application of TAM Framework:** Studies that explicitly utilize or discuss the Technology Acceptance Model (TAM) in the context of agricultural technology adoption.
- **Geographical Scope:** Research conducted both within India (with specific attention to KVks and states like Assam, Rajasthan, Madhya Pradesh, Chhattisgarh, Uttar Pradesh, Odisha, and the Northeastern region) and outside India (e.g., Bangladesh, Indonesia, Sudan, Iran).
- **Publication Period:** Literature published predominantly between 2000 and 2023, as indicated by the provided references and study dates.
- **Study Types:** Both conceptual reviews and empirical research studies (e.g., surveys, case studies) were considered.

3.2 Exclusion Criteria

- **Irrelevant Topics:** Studies not directly related to agricultural extension or ICT adoption in agriculture.
- **Non-Academic Sources:** Grey literature, opinion pieces, or reports without a clear research methodology, unless explicitly cited in the provided document as a foundational conceptual review.
- **Studies Without Clear Findings:** Articles that did not present discernible results or conclusions relevant to the objectives of this review.
- **Duplicative Content:** Instances where the same study was referenced multiple times without new information.

4. Research Trends

The reviewed literature from 2000 to 2023 reveals several prominent research trends in the domain of cyber extension in agriculture:

- **Increasing Focus on Mobile Communication:** There is a clear shift towards the use of smartphones by extension workers as their primary communication medium. Studies consistently highlight the widespread adoption of mobile phones for information transfer, problem-solving, and market access.

- **Positive Perception of Cyber Extension:** Agricultural extension workers generally exhibit a positive perception of cyber extension, acknowledging its benefits, potential for convenience, and ease of use. This indicates a growing recognition of ICTs as valuable tools in their professional activities.
- **Familiarity with ICTs:** A significant proportion of extension personnel demonstrate familiarity with various ICT tools, with many having several years of experience in using them. This suggests a foundational level of digital literacy within the agricultural extension community.
- **Implementation of Agricultural Extension Programs:** Cyber extension is increasingly found to be effective in the implementation of agricultural extension programs, improving information access for a wide range of stakeholders, including farmers, extension workers, scientists, researchers, and managers.
- **Influence of TAM Variables:** The Technology Acceptance Model (TAM) is frequently employed to assess ICT use and preferences. Variables such as perceived usefulness, perceived ease of use, attitude, and intention are consistently found to be significant factors influencing cyber extension adoption. Experience also plays a crucial role in shaping these perceptions.
- **Persistent Challenges:** Despite the positive trends, several challenges remain pervasive. These include limited internet connectivity, particularly in rural areas; insufficient technical know-how among some users; high costs associated with ICT devices and services; and a lack of adequate organizational support (e.g., for internet packages, maintenance, and ongoing training).
- **Preference for Traditional Methods:** Interestingly, alongside the adoption of modern ICTs, traditional communication methods like print media and personalized contact continue to be preferred by a notable segment of extension workers and farmers. This suggests a need for integrated approaches that blend new and old methods.
- **Demand for Training and Support:** There is a strong and consistent demand from extension workers for comprehensive training and support in various aspects of ICT utilization, including specific applications, management information systems (MIS), and alternative power sources for electricity.
- **Socio-Demographic Influences:** Demographic factors such as age, education, specialization, designation, and work experience are shown to have significant associations with ICT usage patterns, highlighting the need for tailored interventions. Younger and less experienced personnel often show a higher inclination towards ICT use.

5. Discussion

The reviewed articles, while diverse in their specific contexts and methodologies, offer both common insights and contrasting perspectives on cyber extension.

Commonalities

- **Importance of ICTs:** Across almost all studies (e.g., Das and Mishra, 2017; Dube *et al.*, 2019; Ahuja, 2011), there is a universal recognition of the pivotal role of ICTs in revolutionizing agricultural extension by enabling timely information dissemination and bridging communication gaps.

- **Mobile Phones as Dominant Tool:** Studies from both India (e.g., Dube *et al.*, 2019; Saxena *et al.*, 2011) and outside (e.g., Rahman and Fadol, 2015) consistently identify mobile phones (and specifically WhatsApp in more recent studies like Dishant *et al.*, 2020) as the most widely used and preferred ICT tool for information transfer.
- **Perceived Usefulness:** The concept of "perceived usefulness" (a core TAM construct) frequently emerges as a strong predictor of ICT adoption. Scientists and extension workers generally agree that ICTs enhance job performance, increase productivity, and improve decision-making (e.g., Patra *et al.*, 2020; Kabir *et al.*, 2022).
- **Challenges in Infrastructure and Support:** A recurring theme is the significant challenge posed by inadequate infrastructure (poor internet connectivity, irregular electricity supply) and insufficient organizational support (lack of funds, technical assistance, ongoing training) (e.g., Kale *et al.*, 2017; Tayade *et al.*, 2011; Rahman and Fadol, 2015).
- **Need for Training:** Almost all studies emphasize the critical need for training facilities and skill development programs to enhance the competence of extension officers in utilizing ICTs effectively (e.g., Kale *et al.*, 2017; Sugiyanto *et al.*, 2014).

Contrasts/Nuances

- **Purpose of ICT Use:** While some studies like Dashora and Henry (2022) found "cyber extension" ranking lowest in purpose of utilization among KVK scientists in Rajasthan, others like Amin *et al.* (2013) demonstrated the effectiveness of cyber extension in supporting farming activities in Indonesia. This suggests variations in the actual application and perceived direct utility of "cyber extension" as a holistic concept versus specific ICT tools.
- **Impact of Demographic Factors:** While Baruah and Mohan (2020) detailed significant associations between sex, age, education, specialization, designation, and work experience with ICT usage patterns in Northeast India, other studies might not delve into such granular demographic analysis, or their findings on specific correlations may differ based on the sample.
- **Authenticity Concerns:** Dishant *et al.* (2020) specifically highlighted concerns about the lack of authenticity and scientific validity in social media messages as a major challenge for KVK scientists, a point not as explicitly emphasized in all other studies, which might focus more on technical or financial constraints.
- **Government Policy and Conformity:** Sabir *et al.* (2019) in Malang Raya region, Indonesia, specifically noted issues with government policy support and a lack of conformity between agricultural extension programs and work plans, along with outdated information from cyber extension. These policy and content-related challenges are less explicitly detailed in some of the Indian studies, which tend to focus more on ground-level infrastructure and user-level skills.
- **Traditional vs. Modern Media Preference:** While many studies show increasing ICT adoption, Baruah and Mohan (2020) explicitly noted that despite ICT availability, traditional modes of communication were still preferred over modern methods in Northeast India.

This highlights a nuanced reality where digital tools complement rather than entirely replace established practices.

- **Scope of TAM Application:** While Alambaigi and Ahangari (2015) developed a comprehensive TAM model explaining various factors influencing ICT adoption among Iranian agricultural extension agents, other TAM-related studies (e.g., Kabir *et al.*, 2022; Cahyono *et al.*, 2000) might focus on a subset of TAM variables or specific aspects of technology acceptance. In essence, while the overarching narrative points to the increasing importance and acceptance of cyber extension, the specifics of its implementation, the challenges faced, and the factors influencing adoption vary significantly based on geographical context, socio-economic conditions, and the specific ICT tools being examined.

6. Research Gaps

Despite the extensive body of literature reviewed, several critical research gaps remain, particularly concerning the comprehensive understanding and effective implementation of cyber extension in agriculture, especially when viewed through the lens of the TAM model:

- **Deeper Understanding of Perceived Usefulness and Ease of Use in Diverse Contexts:** While these are core TAM constructs, there's a need for more nuanced qualitative research to understand *why* certain ICT tools are perceived as useful or easy to use by specific farmer segments or extension personnel in varied agro-climatic zones. The current literature often quantifies these perceptions but lacks in-depth exploration of the underlying reasons and context-specific interpretations.
- **Context-Specific Factors Influencing Intention and Actual Use:** Beyond the general TAM variables, there's a gap in understanding how unique socio-cultural, economic, and institutional factors (e.g., local governance, community dynamics, specific crop cycles, market access issues) interact with perceived usefulness and ease of use to shape the intention and actual adoption of cyber extension tools. More localized case studies are needed.
- **Effectiveness of Training and Capacity Building Programs:** While the need for training is widely acknowledged, there's a lack of rigorous empirical studies evaluating the *effectiveness* of different training methodologies (e.g., online vs. offline, peer-to-peer learning, hands-on workshops) in improving ICT skills and fostering cyber extension adoption. Longitudinal studies tracking skill development and actual behavioral change are scarce.
- **Organizational Support Dynamics and Policy Implementation:** The literature points to a lack of organizational support, but there's a gap in understanding the specific mechanisms through which organizational policies, funding, and technical support can be optimally structured to facilitate cyber extension. Research is needed on best practices for institutionalizing cyber extension initiatives and measuring the return on investment for such support.
- **User Experience (UX) and Interface Design for Agricultural Apps:** Given the increasing use of smartphones, there's a significant gap in research focusing on the optimal user experience and interface design for agricultural applications tailored to the specific needs, literacy levels, and language preferences of

farmers and extension workers. This includes research on visual design, navigation, and content presentation for diverse user groups.

- **Interplay of Socio-Economic Factors and Technology Adoption:** While some studies touch upon demographic factors, a more comprehensive understanding is needed of how a confluence of socio-economic variables (e.g., landholding size, income levels, access to credit, gender, social networks) collectively influences the adoption and sustained use of cyber extension, especially in marginal farming communities.
- **Dynamic Nature of ICT and Adaptability of Extension Workers:** The rapid evolution of ICTs means that research often lags behind technological advancements. There's a gap in understanding how extension systems and personnel can build continuous learning mechanisms and adaptability to embrace evolving ICT tools and platforms, rather than just adopting static technologies.
- **Impact Assessment on Agricultural Productivity and Farmer Livelihoods:** While studies often highlight the potential benefits of cyber extension, there's a need for more robust, long-term impact assessments that directly link cyber extension adoption to tangible improvements in agricultural productivity, farmer income, market linkages, and overall livelihood enhancement. Addressing these research gaps requires a multi-disciplinary approach, combining quantitative and qualitative methodologies, and engaging closely with both technology developers and end-users in the agricultural sector.

Conclusion

The review of literature unequivocally demonstrates the growing significance of cyber extension in transforming agricultural extension services globally, particularly in India. ICTs, especially mobile phones, have emerged as indispensable tools for information dissemination, problem-solving, and market access, fostering greater connectivity among agricultural stakeholders. The Technology Acceptance Model (TAM) provides a valuable framework for understanding the factors influencing the adoption of these technologies, with perceived usefulness and ease of use consistently identified as critical determinants.

Despite the positive perceptions and increasing adoption rates, the path to widespread and effective cyber extension is fraught with challenges. Persistent issues include inadequate internet connectivity, insufficient technical know-how, high costs of ICT infrastructure and services, and a notable lack of comprehensive organizational support. Moreover, traditional communication methods retain their importance, suggesting that a blended approach integrating both modern and conventional channels may be most effective. The demand for targeted training and capacity-building programs for extension personnel remains high, underscoring the need for continuous skill development.

Way Forward

To bridge the identified research gaps and enhance the impact of cyber extension in agriculture, the following recommendations are proposed:

- **Develop Context-Specific ICT Solutions:** Future initiatives should move beyond generic solutions and focus on designing cyber extension tools and platforms that are highly tailored to the specific needs, linguistic

diversity, literacy levels, and socio-economic contexts of different farming communities and regions. This requires participatory design approaches involving farmers and extension workers from the outset.

- **Strengthen Digital Infrastructure in Rural Areas:** Governments and private sector entities must prioritize investments in robust and affordable internet connectivity in rural agricultural areas. This includes exploring diverse technologies like satellite internet, community Wi-Fi, and low-cost data plans to ensure equitable access.
- **Implement Comprehensive and Continuous Training Programs:** Training programs for extension officers and farmers should be designed to be hands-on, practical, and continuous, covering not only basic ICT literacy but also advanced applications, data analysis, and content creation. These programs should adapt to evolving technologies and incorporate feedback mechanisms.
- **Foster Stronger Institutional and Policy Support:** Agricultural organizations and policymakers need to develop clear, supportive policies for cyber extension, including dedicated funding for ICT procurement, maintenance, technical support, and ongoing research and development. Establishing dedicated cyber extension units with sufficient human and financial resources is crucial.
- **Promote Content Localization and Authenticity:** Efforts should be made to develop high-quality, scientifically validated agricultural content in local languages and formats that are easily digestible by farmers. Mechanisms for verifying information authenticity and combating misinformation on digital platforms are essential.
- **Integrate Traditional and Modern Extension Methods:** Rather than viewing cyber extension as a replacement, it should be seen as a powerful complement to traditional extension methods. Strategies should focus on synergizing digital tools with face-to-face interactions, field demonstrations, and community meetings to maximize reach and impact.
- **Conduct Longitudinal Impact Assessments:** Future research should prioritize long-term, rigorous impact assessments that measure the tangible benefits of cyber extension on agricultural productivity, farmer income, market linkages, and overall rural development. This will provide stronger evidence for policy advocacy and investment.
- **Explore Advanced Technologies and AI:** Research should delve into the potential of emerging technologies like Artificial Intelligence (AI), machine learning, and blockchain in cyber extension for predictive analytics, personalized advisories, supply chain management, and enhanced transparency.
- **Focus on User Experience (UX) Research:** More dedicated research is needed on optimizing the user experience of agricultural digital platforms, ensuring intuitive interfaces, accessibility for diverse users (including those with limited digital literacy), and culturally appropriate design. By systematically addressing these areas, stakeholders can collectively work towards a future where cyber extension truly empowers agricultural communities, enhances food security, and contributes to sustainable rural development.

References

1. Ahuja V. Cyber extension: A convergence of ICT and agricultural development. *Global Media Journal*. 2011; 2(2):1-8.
2. Alambaigi A, Ahangari I. Technology Acceptance Model (TAM) as a Predictor Model for Explaining Agricultural Experts' Behavior in Acceptance of ICT, 2015.
3. Amin M, Sugiyanto K, Sukesni Ismadi. The effectiveness of cyber-extension-based information technology to support agricultural activities, 2013.
4. Baruah A, Mohan M. Usage of ICT by agricultural extension personnel in the northeastern region of India, 2020.
5. Cahyono B, Setyowati R, Ihsaniyati H. The adoption of cyber extension by agricultural extension workers (PPL) and its influencing factors, 2000.
6. Dash P, Henry C. Purpose of utilizing ICT tools by Krishi Vigyan Kendra (KVK) scientists in Rajasthan, 2022.
7. Dash Mishra. Cyber extension: Empowering rural community. *Journal of Communication Studies*. 2017; 28(3):11.
8. Dishant J, Jojit James. Social media for agricultural development: perceptions of Krishi Vigyan Kendra scientists, 2020.
9. Dube R, Sharma R, Singh R. Importance of ICT tools as information sources as perceived by KVK staff and farmers. *Indian Journal of Extension Education*. 2019; 55(4):47.
10. Gemini AI. (n.d.). Gemini AI [Large language model]. Google. Retrieved from [Insert relevant URL if available, e.g., <https://gemini.google.com/>]
11. Grammarly. (n.d.). Grammarly [Computer software]. Retrieved from <https://www.grammarly.com/>
12. Guntoro A, Qui T, Triatmojo S. The evolving landscape of agriculture, emphasizing the industrialization of agriculture and the role of cyber extension in implementing agricultural extension, 2022.
13. Kabir KH, Hassan MK, Islam MS. An application of the Technology Acceptance Model to assess the use and preferences of ICTs among field-level extension officers in Bangladesh, 2022.
14. Kale RB, Meena MS, Singh SK. Constraints perceived by Krishi Vigyan Kendra (KVK) scientists in Rajasthan and Gujarat regarding the utilization of Information and Communication Technologies (ICTs) for agricultural extension, 2017.
15. Fangohoi L, Rumbiak S, Rumbiak E. Perception of agricultural extension workers towards cyber extension as an information medium, 2018.
16. Patra S, Raj RK, Mishra JR. Assessment of the extent of perceived computer use by professionals in various extension activities, 2020.
17. QuillBot. (n.d.). QuillBot [Online paraphrasing and summarizing tool]. Retrieved from <https://quillbot.com/>
18. Rahman AMA, Fadol IO. Use of ICTs in agricultural extension services in Gezira State, Sudan, 2015.
19. Robert S, Sadanandan AK, Binu K. Cyber dissemination approach of KVK Pathanamthitta. *Journal of Global Communication*, 9(Conf), 2016, 36.
20. Saravanan R. ICTs for agricultural extension in India: Policy implications for developing countries. In Proc. of 8th Asian Conference for Information Technology in Agriculture, AFITA, 2012, 1-11.
21. Saxena A, Tomar DS, Dixit AK. Cyber extension-an effective linkage between scientist and farmers. *Rajasthan Journal of Extension Education*. 2011; 19:25-29.
22. Sharma R, Dubey R, Singh R. Factors encouraging information and communication technologies (ICTS) usage to KVKs scientists of Madhya Pradesh and Chhattisgarh. *Journal of Communication Management and Sustainable Development*. 2019; 14(3):18.
23. Sabir S, Sugiyanto S, Sukesni Y. Analysis of factors influencing agricultural extension performance in the use of cyber extension in Malang Raya Region, 2019.
24. Sugiyanto S, Hanani N, Yuliati Y. Factors affecting agriculture extension officers' skills in cyber extension-based agriculture extension, 2014.
25. Tayade A, Chinchmalatpure U, Supe S. Extent of Information and Communication Technology (ICT) usage among scientists and problems faced by scientists in utilizing various ICTs, 2011.