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Abstract 
G= (V, E), a graph of ‘P’ vertices. and 'q' edges is said to have a prime labeling if pvertices. 
are labeled with distinct Positive integers 1,2, 3....p that do not exceed "p", so that reach pair 
of neighboring Vertices u and v are co-prime, A prime Graph (PG) is a graph G that admits 
prime labeling, graph labeling is an important area of research in Graph Theory (GT). There 
are many types of graphs labeling and other different labeling techniques.In this work, 
examine Whether Multicycle graphs M (Cń) have prime labeling We also discuss Prime 
Labeling in the context of some graph operations namely cycle and Path. 
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Introduction 
Prime Labeling: 
Assume that a graph with "p" vertices is G = (V,E). A 
labelling ẝ: V(G) {1,2,3,……p}, the labels given to the 
vertices u and v are substantially prime for each edge e = uv, 
then V(G) is considered to have prime labeling. Prime Graph 
(PG) is a graph that admits prime labeling. 
 
Path: 
Path Pn = v1v2v3 ………..vń has ‘ń’ vertices and ‘ń -1’ edges. 
 
Cycle: 
Cycle Cn = v1v2v3 ………..v ń v1 has ‘ń’ vertices and ‘ń’ 
edges. 
 
Main Results: 
Theorem 2.1: 
Two copies of Cycles intersecting vertex graph at a common 
vertex is a PG. 
 
Proof: Let G be a graph obtained from the two copies cycles 
intersecting at a common vertex it is denoted by 2(Cn). 
Let V(G) = {v1,v2, v3, …….v ń, v ń +1, …… v2 ń -1}  
The total number of vertices p is 2 -1. 

The labelling is defined as ẝ (V) {1, 2, ……..( 2 ń - 1) } with  
ẝ (vi) = i for 1 ≤ i ≤ 2 ń -1 
 
According to this pattern, the (ĝćđ is greatest common 
divisor) 

ĝćđ{ ẝ (v1), ẝ ( )} = 1 
ĝćđ { ẝ (v1), ẝ (V ń +1)} = 1 
ĝćđ { ẝ v1), ẝ (v2 ń -1)} = 1 
ĝćđ { ẝ (vi), ẝ (v j+1)} = 1 for 1 ≤ j ≤ ń -1 
ĝćđ { ẝ (vi), ẝ (v j+1)} = 1 for n+1 ≤ j ≤ 2 ń -2 
 
Consequently e = uv for each edge, having u and v as co 
primes. 
Hence, graph 2(C ń) is a PG. 
 
Theorem 2.2 
Three copies of Cycles intersecting at a common vertex graph 
is a PG. 
 
Proof: Let G be a graph obtained from 3(Cń) which is a 
common vertex where the three copies of cycles intersecting. 
Let V(G) =  
{v1,v2, v3, …….v ń, v ń +1,…. v2 ń -1, v2 ń,v2 ń +1,…v3 ń -2}  
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The total number of vertices p is 3 ń -2. 
The labelling is defined as ẝ (V) {1, 2, ……..(3 ń - 2)} with 
ẝ (vi) = i for 1 ≤ i ≤ 3 ń -2 
 
According to this pattern, the 
ĝćđ { ẝ (v1), ẝ (v ń)} = 1 
ĝćđ { ẝ (v1), ẝ (v ń +1)} = 1 
ĝćđ { ẝ (v1), ẝ (v2 ń -1)} = 1 
ĝćđ { ẝ (v1), ẝ (v3 ń -2)} = 1 
ĝćđ { ẝ (v1), ẝ (v2 ń)} = 1 
ĝćđ { ẝ (vi), ẝ (vj+1)} = 1 for 1 ≤ j ≤ ń -1 
ĝćđ { ẝ (vi), ẝ (vj+1)} = 1 for ń +1 ≤ j ≤ 2 ń -2 
ĝćđ { ẝ (vi), ẝ (vj+1)} = 1 for 2 ń ≤ j ≤ 3 ń -3 
Consequently e = uv for each edge, having u and v as co 
primes.  
Hence, graph 3(Cń) is a PG. 
 
Theorem 2.3:  
Four copies of Cycles intersecting at a common vertex graph 
is a PG. 
 
Proof: Let G be a graph obtained from 4(Cń) which is a 
common vertex where the fourcopies of cycles intersecting. 
Let V(G) = {v1,v2, v3, …….v ń, v ń +1,…. v2 ń -1, v2 ń,v2 ń +1,…v3 

ń -1,v3 ń,v3 ń -1,….v4 ń -3} 
 
The total number of vertices p is 4 ń -3. 
The labelling is defined as ẝ (V) {1, 2, ……..( 4 ń - 3)} with 
ẝ (vj) = j for 1 ≤ j≤ 4 ń -3 
 
According to this pattern, the 
ĝćđ { ẝ (v1), ẝ (v ń)} = 1 
ĝćđ { ẝ (v1), ẝ (v ń +1)} = 1 
ĝćđ { ẝ (v1), ẝ (v2 ń)} = 1 
ĝćđ { ẝ (v1), ẝ (v3 ń -1)} = 1 
ĝćđ { ẝ (v1), ẝ (v2 ń -1)} = 1 
ĝćđ { ẝ (v1), ẝ (v3 ń -2)} = 1 
ĝćđ { ẝ (v1), ẝ (v4 ń -3)} = 1 
ĝćđ { ẝ (vi), ẝ (vj+1)} = 1 for 1 ≤ j ≤ ń -1 
ĝćđ { ẝ (vi), ẝ (vj+1)} = 1 for n+1 ≤ j ≤ 2 ń -2 
ĝćđ { ẝ (vi), ẝ (vj+1)} = 1 for 2n+1 ≤ j ≤ 3 ń -3 
ĝćđ { ẝ (vi), ẝ (vj+1)} = 1 for 3n+1≤ j ≤ 4 ń -4 
Consequently e = uv for each edge, having u and v as co 
primes. 
Hence graph 4(C ń) is a PG. 
 
Theorem 2.4:  
M copies of Cycles intersecting at a common vertex graph is a 
PG. 
 
Proof: Let G be a graph obtained from the M copies of cycles 
intersecting at a common vertex it is denoted by M(C ń). 
Let V(G) = { v1,v2, v3, …….v ń, v ń +1,…. v2 ń -1, v2 ń,v2 ń 
+1,…v3 ń -1, v3 ń,v3 ń -2,….v4 ń -3, .…v ɱ (ń -1)+1}. The total 
number of vertices p is ɱ(ń -1)+1. 
 
Define a labeling  
ẝ (V)   { 1, 2, 3, 4, ……..( ɱ (ń -1)+1) } by 
ẝ (vj) = i for 1 ≤ j ≤ ɱ (ń -1)+1 
 
According to this pattern, the 
ĝćđ { ẝ (v1), ẝ (v ń)} = 1 
ĝćđ { ẝ (v1), ẝ (vn+1)} = 1 
ĝćđ { ẝ (v1), ẝ (v2 ń)} = 1 
ĝćđ { ẝ (v1), ẝ (v3 ń -1)} = 1 

ĝćđ { ẝ (v1), ẝ (v2 ń -1)} = 1 
ĝćđ { ẝ (v1), ẝ (v3 ń-2)} = 1 
ĝćđ { ẝ (v1), ẝ (v4 ń -3)} = 1 
 
In general 
ĝćđ { ẝ (v1), ẝ (v ɱ (ń -1)+1)} = 1 
ĝćđ ẝ (v1), ẝ (v ɱ (ń -1)- ń +3)} = 1 
g.c.d { ẝ (vj), ẝ (vj+1)} = 1 for 1 ≤ j ≤ ń -1 
ĝćđ {ẝ (vj), ẝ (vj+1)} = 1 for ń +1 ≤ j ≤ 2 ń -2 
ĝćđ { ẝ (vj), ẝ (vj+1)} = 1 for 2 ń +1 ≤ j ≤ 3 ń -3 
ĝćđ { ẝ (vj), ẝ (vj+1)} = 1 for 3 ń +1≤ j ≤ 4 ń -4 
ĝćđ { ẝ (vj), ẝ (vj+1)} = 1 for (ɱ (ń -1)- ń +3 ≤ j ≤ ɱ (ń -1) 
Consequently e = uv for each edge, having u and v as co 
primes  
Hence, graph M(Cń) is a PG. 
 
Theorem 2.5:  
M copies of Cycles intersecting at a common vertex @ P1 
graph is a PG. 
 
Proof: Let G be a graph obtained from the M copies of cycles 
intersecting at a common vertex @ P1it is denoted by M(C 
ń)@P1. 
Let V(G) = {v1,v2, v3, …….v ń, v ń +1,…. v2 ń -1, v2 ń,v2 ń +1,…v3 ń 
-1, v3 ń,v3 ń -2,….v4 ń -3, ………,,v ɱ (ń -1)+1,v ɱ (ń -1)+2}  
ɱ (ń -1)+2 is total of vertices p. 
 
The labelling is considered as 
ẝ (V)   {1, 2, 3, 4, ……..(ɱ (ń -1)+2) } by 
ẝ (vj) = j for 1 ≤ j ≤ ɱ (ń -1)+2 
 
According to this pattern, the 
ĝćđ { ẝ (v1), ẝ (v ń)} = 1 
ĝćđ { ẝ (v1), ẝ (v ń +1)} = 1 
ĝćđ { ẝ (v1), ẝ (v2 ń)} = 1 
ĝćđ { ẝ (v1), ẝ (v3 ń -1)} = 1 
ĝćđ { ẝ (v1), ẝ (v2 ń -1)} = 1 
ĝćđ { ẝ (v1), ẝ (v3 ń -2)} = 1 
ĝćđ { ẝ (v1), ẝ (v4 ń -3)} = 1 
 
In general 
ĝćđ { ẝ (v1), ẝ (v ɱ (ń -1)+1)} = 1 
ĝćđ { ẝ (v1), ẝ (v ɱ (ń -1)+2)} = 1 
ĝćđ { ẝ (v1), ẝ (v ɱ (ń -1)-n+3)} = 1 
ĝćđ { ẝ (vji), ẝ (vj+1)} = 1 for 1 ≤ j ≤ ń -1 
ĝćđ { ẝ (vj), ẝ (vj+1)} = 1 for ń +1 ≤ j ≤ 2 ń -2 
ĝćđ { ẝ (vj), ẝ (vj+1)} = 1 for 2 ń +1 ≤ j ≤ 3 ń -3 
ĝćđ { ẝ (vj), ẝ (vj+1)} = 1 for 3 ń +1≤ j ≤ 4 ń -4 
ĝćđ { ẝ (vj), ẝ (vj+1)} = 1 for (ɱ (ń -1)- ń +3 ≤ j ≤ ɱ (ń -1)+1 
 
Consequently e = uv for every edge, having u and v as co 
primes. 
Hence, graph M(Cń)@P1 is a PG. 
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