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G= (V, E), a graph of ‘P’ vertices. and 'q' edges is said to have a prime labeling if pvertices.
are labeled with distinct Positive integers 1,2, 3....p that do not exceed "p"
of neighboring Vertices u and v are co-prime, A prime Graph (PG) is a graph G that admits
prime labeling, graph labeling is an important area of research in Graph Theory (GT). There
are many types of graphs labeling and other different labeling techniques.In this work,
examine Whether Multicycle graphs M (Cn) have prime labeling We also discuss Prime
Labeling in the context of some graph operations namely cycle and Path.
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Introduction

Prime Labeling:

Assume that a graph with "p" vertices is G = (V,E). A
labelling T: V(G) {1,2,3,...... p}, the labels given to the
vertices u and v are substantially prime for each edge ¢ = uv,
then V(G) is considered to have prime labeling. Prime Graph
(PG) is a graph that admits prime labeling.

Path:

Path P, =vivavs ........... vi has ‘n’ vertices and ‘n -1° edges.
Cycle:

Cycle C, = vivavs
edges.

........... v 4 vi has ‘A’ vertices and ‘n’

Main Results:
Theorem 2.1:
Two copies of Cycles intersecting vertex graph at a common
vertex is a PG.

Proof: Let G be a graph obtained from the two copies cycles
intersecting at a common vertex it is denoted by 2(C,).

Let V(G) = {V1,V2, V3, e Vo _1}

The total number of vertices p is 2 -1.
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The labelling is defined as (V) {1, 2, —p..(211- 1) } with
f(vp=ifor1<i<2n-1

According to this pattern, the (g¢éd is greatest common
divisor)

ged{ f(v), T(Vn)} =1

géd {f(vi), T(var)} =1

8éd {Tv1), T(van-1)} =1

géd {T(vi),T(vi)}p=1forl1 <j<n-1

g¢d {T(vi),T(vi)}=1forntl1 <j<2n-2

Consequently e = uv for each edge, having u and v as co
primes.
Hence, graph 2(Cy) is a PG.

Theorem 2.2
Three copies of Cycles intersecting at a common vertex graph
is a PG.

Proof: Let G be a graph obtained from 3(Cn) which is a
common vertex where the three copies of cycles intersecting.
Let V(G) =

{V],Vz, Vi, ool Vi, Vi +15.0.. V21 -1, V218,V2 10 +1,...V3 1 .2}
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The total number of vertices p is 3 n -2.
The labelling is defined as f (V) {1, 2, .~.(3 1 - 2)} with
f(vip=ifor1<i<3n-2

According to this pattern, the

ged {f(vi), T(va)} =1

ged {T(vi), T(va+)} =1

ged { T (v1), T (van-)} =1

ged { T (v1), T (via)} =1

ged { T (v1), T(van)} =1

ged { T (vi), T(vj+1)} =1for1<j<n-1

ged {f(vi), T(vir)} =1forn+1<j<2n-2
ged {f(vi), T (vir)}=1for2n<j<3n-3
Consequently e = uv for each edge, having u and v as co
primes.

Hence, graph 3(Cn) is a PG.

Theorem 2.3:
Four copies of Cycles intersecting at a common vertex graph
isaPG.

Proof: Let G be a graph obtained from 4(Cn) which is a
common vertex where the fourcopies of cycles intersecting.
Let V(G) = {V1,V2, Vi, ..ol Via, Va+ly.... V21 -1, V24,V214 +1,...V3
£ -1,V3 85 V3 fi -15e..-Vaf 3}

The total number of vertices p is 4 n -3.
The labelling is defined as T (V) {1, 2, —p...(4 11 - 3)} with
f(vp=jfor1<j<4n-3

According to this pattern, the

ged {f(vi), T(va)} =1

ged {T(v), T(va+)} =1

ged { T (v1), T(van)} =1

géd { f(V1), f(V}ﬁ ,1)} =1

géd { f(V1), f(Vzﬁ ,1)} =1

géd { f(V]), f(V}ﬁ _2)} =1

géd { f(V]), f(V4ﬁ _3)} =1

g¢d {T(vi), T(vir)}=1for1<j<n-1

ged { T (vi), T(vj+1)} =1forntl1 <j<2n-2
ged { T(vi), T(vjr1)} =1 for2n+1 <j<3n-3
géd { T (vi), T(vj+1)} =1 for 3n+1<j<4n-4
Consequently e = uv for each edge, having u and v as co
primes.

Hence graph 4(C n) is a PG.

Theorem 2.4:
M copies of Cycles intersecting at a common vertex graph is a
PG.

Proof: Let G be a graph obtained from the M copies of cycles
intersecting at a common vertex it is denoted by M(C ).

Let V(G) = { Vi,V2, V3, ....... Vi, Vi +lseeer V200 -1, V2 8,V2 1
+1,---V3 4 -1, V3 4,V3 4 2,....V4 n 3, ....V (4 _1)+1}. The total
number of vertices p is m(t -1)+1.

Define a labeling

f(V)—»{1,2,3,4,....... (m (A -1)+1) } by
f(v)=ifor1<j<m(a-1)+t1

According to this pattern, the
géd {f(vi), T(va)} =1

géd {T(vi), T(var)} =1

géd { T (v1), T(van)} =1

ged {T(vi), T (vsn-)} =1

https://alladvancejournal.com/

géd { f(V]), f(V2{1 .1)} =1
géd { f(V]), f(V3 {1.2)} =1
ged {T(v1), T (van3)} =1

In general

ged {T(vi), T(Via n+)} =1

geAT(vi), T(Viya-n-n+3)} =1

ged {f(v),f(viz)}=1for1<j<n-l1

ged {f(vj), f(vix)} =1forn+1<j<2n-2

ged { T (vj)), T(vir)} =1for2n+1<j<3n-3

ged { T (v, f(vj+)} =1for3n+1<j<4n-4

g¢d {T(vj),T(vip)}=1for(m(n-1)-n+3<j<mn-1)
Consequently e = uv for each edge, having u and v as co
primes

Hence, graph M(Cn) is a PG.

Theorem 2.5:
M copies of Cycles intersecting at a common vertex @ P,
graph is a PG.

Proof: Let G be a graph obtained from the M copies of cycles
intersecting at a common vertex @ Piit is denoted by M(C
n)@P;.

Let V(G) = {V1,V2, Vi, coeenn Vi, Va+lsee.o V211, V20,V28 +1,...V3 1
15 V318,V38a 2500 VAR 3y cevennnnn 5V (i -1)+1,V m (n .1)+2}

m (i -1)+2 is total of vertices p.

The labelling is considered as
f(V)—»{1,2,3,4, ........ (m (h-1)+2) } by
f(vj)=jforl1<j<m(n-1)+2

According to this pattern, the
géd {T(vi), f(va)} =1

géd { f(V]), f(Vﬁ +1)} =1
ged { T(vi), T(van)} =1

ged {T(vi), T(vaa-)} =1
géd { T (v1), T(van-1)} =1
géd { T (vi),T(van2)} =1
ged {T(v1), T(van3)} =1

In general

ged {T(v1), T(vy@-n)} =1

ged it (v), T(va-nr)} =1

ged { T (v1), T (Vi -nn3)} = 1

g¢d { T (vj), T (vi)} = 1 for 1 <j<n-1

ged {T(vi), T(vie)l = 1 fora+1<j<2n-2

8¢d { T(v), T(vier)} = 1 for2a+1<j<3n-3

ged {T(vi), T(vi)! = 1 for 3n+1<j<4n -4

8¢d {1 (vj), T(vir1)} = 1 for (m (A -1)- A+3 <j <m (A -1)+1

Consequently e = uv for every edge, having u and v as co
primes.
Hence, graph M(Cn)@P; is a PG.
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