

Effects of Dietary Inclusion of Different Levels of Roselle (*Hibiscus Sabdariffa*) Seeds on Blood Parameters and Fatty Acids Profile of Broilers

*¹ Mohamed Elkhattim Ibrahim Abdelmageed, ²Amjad Basheir Suliman Haj Babiker, ³Mutaz Saeed Babiker Mahmoud, ⁴Elhashmi YH and ⁵Hassan HE

*^{12,4,5} Box (20), Department of Meat Production and Technology, Faculty of Animal Production, University of Gezira, Al-Managil, Gezira State, Sudan.

³Box (20), Department of Poultry Production, Faculty of Animal Production, University of Gezira, Al-Managil, Gezira State, Sudan.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 25/March/2025

Accepted: 26/April/2025

Abstract

The aim of the study is to assess the effects of dietary Inclusion of different Levels of Hibiscus (Karkade) seeds on blood parameters and Fatty Acids profile of Broilers. The Roselle (*Hibiscus Sabdariffa*) seeds were incorporated in broiler rations at levels of (k0%, k3%, k5% a n d k7%) in broiler rations the study was run in 6 weeks" period using four experimental diets. The experimental diets were formulated to be iso -energetic and iso-nitrogenous to meet or exceed the requirements of broilers according to (NRC, 1994). The experiment was carried out in a complete randomized design (CRD). A total of 120 one day-old (Ross308) broilers were allocated to the four treatments (K0 (control), K3, k5 and k7) and each treatment was further divided randomly into three replicates with ten birds each. At the end of the experiment, two birds from each experimental unit were selected according to their closed to average weight of birds in particular pen and slaughtered. Blood samples were collected for hematological profile and constituents. Abdominal fat pad samples from birds were taken to assess the effects on fatty acid profile of birds. All data was statistically analyzed using ANOVA. Result showed that. Hematological parameters were not affected by experimental treatments except white blood cells (WBC) ($p \leq 0.01$). Blood Cholesterol and triglycerides were affected by experimental treatments. General characteristic of Fatty acid results showed that there were high significant differences except some very long chain fatty acids was not significantly defer among treatments. Main unsaturated fatty acids in fat were Oleic, Linoleic and Elaideic acid and the saturated acids were Palmitic, stearic and Myristic acid. Omega3 (167.9). omega 6 (43.77) and omega 9 (55.08). The ratio of saturated FA to unsaturated FA 2:1 and omega 6 to omega 3 was 1:3. Dietary Inclusion of different Levels of Hibiscus Seeds improved Broiler Fatty acid profile and reduced of blood Cholesterol there for it recommended to include Roselle seeds 3% and do not up to 7% in broiler diets.

*Corresponding Author

Mohamed Elkhattim Ibrahim Abdelmageed
Box (20), Department of Meat Production and Technology, Faculty of Animal Production, University of Gezira, Al-Managil, Gezira State, Sudan.

Keywords: Roselle seeds, blood parameters, fatty acids, profile, broilers.

Introduction

Poultry meat is an animal product important for human nutrition such as it is low in fat and cholesterol and it is healthier than other animal particularly red meat. Howe, *et al.*, (2006). Poultry meat has been considered one of the solution of the cardiovascular disease which is containing a higher amount of PUFA particularly n-3PUFA. In recent researches dietary supplement have been tested in broiler diet content low fat and cholesterol of broiler meat. Adam (2021). The substitution of red meat with poultry decreases the risk of developing type 2 and gestational diabetes mellitus, improves glycemic control and cardiovascular risk factors. Low-fat

diets supported poultry instead of red meat yields cardiovascular health benefits. Donma (2017).

The major factor limiting the growth of the poultry industry is the high prices of balanced feed which represents about 75% of the total cost of production due to demand competition between human a n d a n i m a l s especially poultry Oloyed *et al.*, (2010). Broilers are more efficient in converting raw feedstuffs into high protein food which is urgently needed to improve the human nutrition. Therefore, recently the poultry nutritionists keep looking for economic alternatives of protein sources Mukhtar *et al.*, (2012).

A promising alternative crop that can be exploited for this purpose is Roselle (*Hibiscus Sabdariffa*) seeds are known as highly nutritional, antibacterial, antifungal and anti-parasitic actions Singh *et al.*, (2017). Roselle plants are suitable for tropical and sub-tropical climate mainly for production of calyxes, many studies had shown that Roselle seeds contained high mounts of protein used in some African countries for human consumption. Abdalla, (2013) Roselle is so rich that in organic acids, minerals, amino acids, carotene, vitamin C and total sugar in its calyx, leaves and seeds at variable levels depending on the variety and geographical area Mady *et al.*, (2009).

The hibiscus origin is uncertain, while others believe that its original country is India Abu-Tarboush *et al.*, (1997), West Africa Cobley (1975), Sudan Abdalla (2013) Turkish Mclean (1973) Malaysia and Saudi Arabia Abd Aziz *et al.*, (1985). Roselle also contributes in the field such as veterinary medicine to experiments with domestic fowl showed that the aqueous extract of calyces is effective against *Ascaris gallinarum* (Hassan 2010). Roselle seeds have been used as a source of protein for broiler chicken production Owosibo *et al.*, (2017).

Roselle seed meal nutrients content were comparable to those of groundnut meal Mohammed and Idris, (1991). Certainly, both contained reasonable levels of crude protein, high enough to allow the inclusion of these meals in broiler diets as protein sources. However, Salih *et al.*, (1990) provided evidence that Roselle seed meal can replace groundnut and sesame meals without significant reduction in feed intake, weight gain, feed conversion ratio (FCR), mortality and dressing percentage of broilers. ELtoum, (1992) concluded that feeding graded levels of Roselle seed (0, 7.5, 15 and 22.5%) to broiler chicks showed a linear reduction in feed intake whereas body weight and mortality rate at four weeks of age. Bakheit, (1993) showed a linear increase in feed intake and suggested that Roselle seed has no effect on feed intake when fed (5, 10, 15 or 20%) level on layer performance.

Materials and Methods

Experimental Site

This experiment was carried out at Extension and Rural Development Centre, Faculty of Animal Production, University of Gezira Elmanagil, Gezira State, Sudan. This site lies between latitudinal 13.30 and 14.45 longitudinal and 32.45 and 33.15 horizontally at the Centre of Sudan.

Birds housing and management the birds were kept in open sided house situated on east west direction making the long axis facing North and south wind. The housing system used was deep litter system. The dimensions of the house were length was (21 meters), width was (6 meters) and the height of each longitudinal side was (3meters) with 80 centimeters height of bricks wall and the rest of the area was made of wire mesh. The roof and the walls were painted with white paint to reflect the solar radiation the floor was made of concrete and it was covered with thick layer of sawdust to remain always

dried, the roof was made of corrugated iron sheets. The house was cleaned, burned and sprayed with Cypermethrin 10% E.C. (2ml/l). The feeder and drinker were also washed and disinfected three days before the arrival of the birds and they were cleaned daily throughout the experimental period. The house was divided into 12 Pens. The dimensions of each pen were (100cm) length, (100) width was (100cm) and (90 cm) height. Each pen contained ten chicks, one metallic tubular feeder and one plastic drinker. Fresh water and feed were supplied throughout the experimental period. The drinkers were cleaned daily. The birds were exposed to natural light during the day and the light bulb lamp during the night. The lamp of 60 watts were used as brooder to supply heat to the birds during the first two weeks by hanging them at 30 cm height, and then hanged at one- meter height to supply light during the night. The electrical appliance was checked and switched on few hours before the arrival of the birds. The house was covered with plastic curtains to remained warmth. One hundred and twenty (120) one- day old Ross308 classic strains of broiler chicks were selected from commercial broiler flock in the farm. The birds were mixed sexes and the average weight for experimental birds about (45 ±2) gram. To protect birds against Newcastle disease (N.D.) and infectious bronchitis (I.B.) dual dose at seven and twenty-one days of age using I.B. Colon 30. The birds were vaccinated against Gambro using Gumbo Best vaccine at fifteen and twenty-eight days old. All vaccines were offered via drinking water.

Experimental Diet

Collection and Preparation Roselle seeds were collected from Elmanagil market. Roselle seeds were cleaned and milled by electrical miller, and sample of Roselle seed flour (RSF) was taken for the proximate analysis table (1). According to the result of proximate analysis, four experimental diets were formulated to meet the requirements of broiler chicks (NRC, 1994).

Table 1: Proximate Analysis of Roselle Seeds

Parameters %	Moisture %	Dry mater%	Crude protein%	Ash%	Ether extract %	Crude fibre%	NFE %
Roselle	7.4	92.6	29.67	4.4	16.67	15.27	26.06

Table 2: Chemical Analysis and Nutrients Composition of Rations Containing Diferent Levels of Roselle Seeds

Parameters	Treatments			
	K0%	K3%	K5%	K7%
Dry matter (%)	96.50	94.50	95.50	96.75
Crude protein (%)	22.75	22.85	22.90	22.95
E.E (%)	3.35	3.25	3.35	3.30
NFE (%)	61.50	58.60	59.35	61.10
Crude fiber (%)	3.95	4.15	4.05	4.25
Ash (%)	4.75	5.65	4.05	4.25

Table 3: Composition of experimental diets (%As Fed) containing different levels of Roselle Seeds during starter period (1-3weeks).

Ingredients	Treatments			
	K 0%	K 3%	K 5%	K 7%
Sorghum	57.88	57.18	56.16	55.09
Ground nut meal	34.50	32.43	31.40	30.40
Wheat bran	0.10	0.00	0.00	0.00
Roselle seeds	0	3	5	7
Super concentrates	5.00	5.00	5.00	5.00

Di calcium	0.72	0.72	0.72	0.72
Grits	0.30	0.30	0.30	0.30
Na cl	0.25	0.25	0.25	0.25
Lysine	0.50	0.50	0.50	0.50
Methionine	0.10	0.10	0.10	0.10
Vegetable groundnut Oil	0.40	0.27	0.32	0.39
Premix	0.25	0.25	0.25	0.25
Total	100	100	100	100
Calculated analysis				
Protein%	22.91	22.83	22.87	22.92
ME(Kcal/kg)	3197.64	3190.38	3190.03	3198.64

Table 4: Composition of experimental diets (%As Fed) containing different levels of Roselle Seeds during starter period (1-3 weeks). (4-6 weeks).

Ingredients	Treatments			
	K 0%	K 3%	K 5%	K7%
Sorghum	57.88	57.18	56.16	55.09
Ground nut meal	26.50	24.70	23.40	22.40
Wheat bran	8.10	7.50	7.82	7.89
Kerkrade seeds	0	3	5	7
Super concentrates	5.00	5.00	5.00	5.00
Di calcium	0.72	0.72	0.72	0.72
Grits	0.30	0.30	0.30	0.30
Na cl	0.25	0.25	0.25	0.25
Lysine	0.50	0.50	0.50	0.50
Methionine	0.10	0.10	0.10	0.10
Vegetable groundnut Oil	0.40	0.50	0.50	0.50
Premix	0.25	0.25	0.25	0.25
Total	100	100	100	100
Calculated analysis				
Protein%	20.57	20.53	20.50	20.56
ME(Kcal/kg)	3229.02	3233.51	3231.51	3228.19

1Super concentrate contained 37% protein, 10% Moisture, 4% Fat, 28% Ash, 7% fiber. 2vitamin= mineral premix provided the following per kilogram of diet: vitamin (retinyle acetate), 10.000IU; cholecalciferol, 2.500IU;" tocopheryle acetate, 60 mg; mendione sodium bisulfide complex, 15mg; thiamine hydrochloride, 2 mg; riboflavin, 8 gram pyridoxine hydrochloride, 4 mg; cyanocobalamin., 04 mg; pantothenic acid 15 mg; nicotinic acid, 40 mg folic acid 1.5 mg; biotin, mg; choline chloride, 200mg; iron, 50 mg; manganese, 50 mg; copper, 10 mg; zinc, 50 mg; calcium352 mg; iodine, 1.46 mg; cobalt. 5 mg; selenium. 2 mg; values and Metabolizable energy were calculated according to (Suleiman and Mabrouk1999).

Experimental Design

The experimental period was divided into two periods on age bases. The first phase is starter (1-3 weeks) and finisher (4-6 weeks). In completely randomized design (C.R.D), four dietary inclusion of Roselle seeds 0% (k0), 3% (k3), 5% (k5) and 7% (k7) were adopted as treatments and replicated three times with ten birds each. The experimental diets were formulated iso-energetic and iso-nitrogenous to meet or exceed the requirements of the Roselle according to (NRC, 1994). Table (2) and (3) showed the diets composition of starter and finisher periods. Three levels of Roselle seeds were incorporated with other ingredients as alternative protein

source as follows: k0 diet was 0% (control), k3 diet was 3%, k5 diet was 5% and k7 diet was 7%. The birds had free access for feed and water throughout the experimental period.

Slaughter Performance

At the end of the experimental period two birds from each experimental unit (replicate) were selected according to their closed average weight to their respective group. Before birds slaughtering they were fasted overnight. They were slaughtered according to the Islamic traditions by Jugular veins serving. The slaughtered (scaled) were dipped into hot water (70°C-80°C), manually scalded (de-feathering) and eviscerated. The head and legs were removed and hot carcasses weighted was obtained and then stored one bird at 1C°. Each other bird was eviscerated and the weight of carcass cuts (chest, thigh, drum stick and wing).

Chemical Composition

Proximate analysis of Roselle seeds and pictorial muscle Samples of Roselle seeds was subjected to proximate analysis at laboratory of Animal nutrition for the International Laboratory Centre in Soba. Dry matter, (D.M.), crude protein (C.P.), fat, crude fiber (C.F.) and ash content were determined according to (AOAC, 2005) Accordingly, were included to form experimental diets. (Table 1).

Blood Samples

Four samples were kept (from each experiment) which were already prepared to be slaughtered at the end of the experiment after two hours feed withdrawal period to decrease the effect of feeding on blood parameters. Samples were collected from the jugular vein for determination of metabolites and hematological profile.

Hematological Parameters

Blood samples for hematological parameters were collected in tubes containing ethylene diamine tetra acetic acid (EDTA). Red Blood Cells (RBC), White Blood Cells (WBC), Packet Cell Volume (PCV), Hemoglobin (Hb) concentration were expressed as milligrams per 100 ml and determined according to (Jain, 1986). PCV was determined by micro hematocrit method. Hb concentration was measured spectrophotometrically by cyanomethaemoglobin method using SP6-500 UV spectrophotometer (Pye UNICAM ENGLAND). The RBC and WBC count were estimated using haemocytometer (Schalm *et al.*, 1975).

Serum Biochemical Indices

Samples with anti-coagulant were centrifuged in test tube for ten minutes (hetlich EBA 20- Germany) at 2000 rpm at room temperature to separate the cells from the plasma for serum

biochemical indices. Serum samples were collected and kept for analysis. All tested blood cholesterol; tri-glycerides, blood protein, calcium and phosphorus were determined spectrophotometrically by using commercial kits.

Cholesterol

The cholesterol was determined using enzymatic, liquid colorimetric test CHOD/PAP method as described by (Trinder., 1969 and Richmond., 1973).

Triglyceride MR

The method on enzymatic hydrolysis of serum or plasma triglyceride to free fatty acids (FFA) by lipoprotein lipase (LPL).

Total Protein

Photometric colorimetric test-biuret method was used to determine the total protein (Tietz., 1986).

Glucose

The quantitative determination of glucose DIV was used to determined glucose content.

Fatty Acid Determination

Collection the Sample Data

After slaughtering and the bird was eviscerated then collected fresh abdominal fat sample, weighted and chilling.

The Equipment

The used equipment was: Gas Chromatography Mass Spectrometer (GC.MS), Detector: Mass Spectrometer. Model: GC.MS, q p. 2010, Company: Shimadz Country: Japan, Carrier gas mobile phase: Helium, Column: (1. Name: Rtx. 50, 2. Diameter: 0.25 Mm, 3. Thickness: 0.25), Injection temp300C, Injectio mode: split, pressure: 82.6 KPa, Total flow: 50.0 mL minG1, Column flow: 1.34 mL mi.

Methylation Steps

Two grams from the sample (abdominal fat bad of broiler chicken from each treatment) was put in a test tube. Then 7 mL from alcoholic sodium hydroxide was added 2ml of the sample was mixed thoroughly with 7ml of alcoholic sodium hydroxide (NaOH) that was prepared by dissolving 2 g in 100 ml methanol. 7 ml from alcoholic sulfuric acid (1ml H₂SO₄ to 100 ml methanol) was then added. The mixture was then

shake for 5 minutes. The content of the test tube was left to stand overnight. 1 ml of Super saturated sodium chloride (Na Cl) was then added and the contents being shaken. 2ml of normal hexane was added and the contents were shaking thoroughly for three minutes. Then the n hexane layer (the upper layer of the test tube) was taken using disposable syringe. 5 μ l from the n-hexane extract was diluted with 5 ml of diethyl ether. Then the mixture was filtered through syringe filter 0.45 μ m and dried with 1g of anhydrous sodium sulphate as drying agent and 1 μ l of the diluted sample was injected in the Gas Chromatography Mass Spectrometer GC.MS instrument (GC.MS), Detector: Mass Spectrometer, Model: GC.MS, q p. 2010, Company: Shimadz Country: Japan, Carrier gas mobile phase: Helium, Column: (1. Name: Rtx. 50, 2. Diameter: 0.25 Mm, 3. Thickness: 0.25), Injection temp300C, Injectio mode: split, pressure: 82.6 KPa, Total flow: 50.0 mL minG1, Column flow: 1.34 mL min.

Results and Discussion

Effect of Dietary Inclusion of Different Levels of Hibiscus (Karkade) Seed on Broiler Hematological Profiles Table (8) showed the effect of inclusion of different dietary levels of Roselle seed treatment by 0%, 3%, 5% and 7% as a source of protein on broiler hematolgy. The hematological parameters were not affected by experimental treatments. The only exception was reported with white blood cells (WBC) cells ($p \leq 0.01$). All the birds diet containing Roselle higher values of white blood cells had 5% (98.65) than those bird's diets on control diets, follow 3% (95.15). However, the birds diet had 7% (93.80) the lowest white blood cells. It may be due to some antigenic proteins which could be found in major leguminous plants resulting in immunomodulation (Huismann and Tolman 1990). Although the total WBC affected significantly by experimental treatments the differentials of WBC were numerically different affected between treatments. This result indicates when bird diet Roselle seed have a good immunity. The current results disagree with (Amer *et al.*, 2022) reported that there were no significant WBC ($P > 0.05$) and significant ($p \leq 0.01$) RBC.

Table 5: Effect of Dietary Inclusion of Different Levels of Hibiscus (Karkade) Seed on Broiler Hematological Profiles

Parameter	Treatment				SE	Sig
	K0%	K3%	K5%	K7%		
Pcv(%)	29.00	28.00	28.50	31.00	1.82	NS
Hb (%)	11.15	12.15	11.20	12.10	1.23	NS
WBCs	95.25 ^b	95.15 ^b	98.65 ^a	93.80 ^b	0.80	*
RBCs	2.34	2.28	2.32	2.55	0.14	NS
Lymphocyte (L)	91.50	89.50	91.00	92.50	1.30	NS
Main cell volume (M	3.50	3.00	3.50	3.00	0.61	NS
Hetrophils (N)	3.50	5.50	3.50	2.00	0.97	NS
Eosinophil (E)	1.00	1.50	1.50	1.50	0.34	NS
Basophil (B)	0.50	0.50	0.00	1.00	0.35	NS
Platelet	36.50	51.00	40.50	46.00	14.23	NS

a-b means values within rows with no common superscripts are significantly different ($P \leq 0.05$). *: significantly. NS= not significant

Effect of Dietary Inclusion of Different Levels of Hibiscus (Karkade) Seed on Broiler Blood Constituents Table (9) showed the effect of inclusion of different dietary levels of Roselle seed treatment by 0%, 3%, 5% and 7% as a source of protein on broiler blood constituents. Blood glucose was not affected by dietary treatments. Blood triglycerides were affected the birds diet with 5% (96.50) diets had the highest,

while birds diet on 3% (82.50) and 7% (69.50) respectively the lowest values. The highest total blood protein was reported with bird's diet on 5% whereas the birds fed with 3% and 7% showed the lowest values. Blood Cholesterol was affected the highest was observed with birds fed on 5%, follow 3% and 7% was the lowest. Cholesterol and triglyceride decrease because Roselle had considerable good

ratio soluble to in soluble fraction in dietary fiber contain when a higher dietary fiber content its reduce dietary fat utilization and that might reduce fat absorption through the gut. These results agreed with (Hainida 2008) and also (Lairon, *et al.*, 1996) who reported that, the presence of non-starch polysaccharides fraction in the diets could affect the metabolism, digestibility and absorption of lipids and cholesterol. Costa, *et al.*, (994) found, the soluble non-starch

polysaccharides of legume seeds are known to be an effective cholesterol-reducing agent. Also, cholesterol was affected by the high content of unsaturated fatty acids which found in Roselle seed. The current dis agree with (Aziza *et al.*, 2011) who reported that there were no significant Cholesterol ($P>0.05$). And agree with him there are significant ($p\leq 0.01$) in TG and no significant in glucose.

Table 6: Effect of Dietary Inclusion of Different Levels of Hibiscus (Karkade) Seed on Broiler Blood Constituents

Parameter	Treatment				SE	S
	K0	k3	k5	k7		
Cholesterol	122.00 ^a	82.50 ^c	96.50 ^b	69.50 ^d	5.65	*
Glucose	142.50	184.50	149.50	158.00	23.08	NS
Ph4	5.00 ^a	4.22 ^{ab}	3.51 ^c	4.07 ^b	0.20	*
T. Protein	2.37	2.13	2.16	1.71	0.38	NS
Triglyceride	16.50 ^c	19.80 ^b	34.55 ^a	17.45 ^c	.091	*

a-b means values within rows with no common superscripts are significantly different ($P\leq 0.05$). *: significantly. NS= not significant

Effect of Dietary Inclusion of Different Levels of Hibiscus Seeds on Broiler fatty acid profile Table (8) showed the effect of dietary inclusion of different levels of Roselle on fatty acid such as saturated and un saturated fatty acid, Polyunsaturated to saturated fatty acids, Essential Fatty Acids, Omega – 3, Omega – 6, Omega – 9, ratio of Omega-6/Omega3 and ratio of saturated/un saturated fatty acid.

Total Saturated Fatty Acid (T.S. FAs)

As results in table (8) show all treatment showed significant differences $P\leq 0.05$ were k3, k5 and k7 lead to decrease to increase Roselle total saturated fatty acids in k3, k5 and k7 recorded (83.14), (32.70) and (35.39) respectively. S.F. As like palmitic acid C16:0 C17H34O2, Myristic acid (C15:0) C15H30O2, Stearic acid (C18:0) C18H36O2, Nonadecylic acid (C19:0) C19H38O2and Cerotic acid (C24:0) C26H52O2. saturated fatty acids associated with coronary heart disease and hyper cholesterol (Ismail *et al.*, 2008) who reported Roselle is containing to anti-hyper cholesterol properties to solved this problem.

Total Unsaturated Fatty Acids (T.U.S. FAs)

As the results in Table (8) shows all treatment showed significant difference $P\leq 0.05$ where k3, k5 and k7 to lead decrease to increase Roselle total unsaturated fatty acid is K3 had a highest (61.93) and th K5 had lowest (16.07). U.S. FAs like C18:2n6 linoleic acid C19H34O2, C18:1 oleic acid C19H36O2, C20:4 n-6 Arachidonic C20H32O2 and C20:3 n-6 Eicosatrienoic C20H34O2. Polyunsaturated fatty acids (PUFA) in the diet for decreasing the risk of vascular diseases. The ratio saturated to unsaturated 2:1 this result disagrees with (El-Aldawy *et al.*, 1994) reported 1:2.

Mono-Unsaturated Fatty Acids (M.U.S. FAs)

As the results in Table (8) shows all treatments affected significant differences $P\leq 0.05$. by dietary inclusion of Roselle lead to decrease M.U.S. FAs w h e n dietary inclusion Roselle increase. Total unsaturated fatty acid is K3 had a highest (47.80) and the K7 had lowest (1.29). M.U.S. FAs like Oleic acid (C18:1) C19H36O2 were the main monounsaturated fatty acids. They have major role this result.

Poly-Unsaturated Fatty Acids (P.U.S. FAs)

As the results in Table (8) shows all treatments affected significant differences $P\leq 0.05$. by dietary inclusion of Roselle lead to increase P. U. S. FAs w h e n dietary inclusion Roselle increase. Poly-un saturated Fatty Acid is K7 had a highest (15.14) and the K5 had lowest (14.10). P. U. S. FAs like (C18:2 n-6) C19H34O alpha linoleic acid This result agrees with (Peng., 2019) has significant and di a gree with (El-Aldawy *et al.*,1994) who reported unsaturated fatty acid more than 70%. of poly un saturated (Peng., 2019) reported Important biological role of n-3 and n-6 polyunsaturated fatty acids are essential components of the human diet because humans are unable to synthesize these fats. Moreover, linoleic fatty acid (C19H34O2) is very useful for the healthy growth of human skin.

PUSFAs/SAFAs

As the results in table (8) shows all treatments affected significant differences ($p\leq 0.5$) by dietary inclusion of Roselle lead to increase PUFA/SFA w h e n dietary inclusion Roselle increase were recorded k3 had lowest level (.17) and k5and k7 both had a highest (.43). Low ratios of polyunsaturated to saturated fatty acids (PUFA/SFA) in Western diets have been considered as a big risk factors for cardiovascular diseases, which are important causes of human death. An intake of it in the ratio of 5 to 10 has been recommended by world health organization WHO/FAO, 2003).

Essential Fatty Acids (E. FAs)

As the results in table (8) shows all treatments affected significant differences ($p\leq 0.5$) by dietary inclusion of Roselle lead to decrease E. FAs w h e n dietary inclusion Roselle increase. E. FAs like C19H36O2, C15H30O2, C17H34O2, C26H52O2, C18H36O2, C19H34O2 and C22H32O2. E. FAs were recorded K3 had a highest level of E. FAs (145.07) and the K5 had lowest level of E. FAs (48.79) compared with control (24.45). (Peng., 2019) EFA is important for producing life energy, which human bodies could not synthesize and can be obtain from external source in diet. (Bradberry *et al.*, 2013) reported Hypercholesterolemia, low immune system and low metabolism rate are related imbalances or deficiencies of these EFAs.

Omega - 3

As the results in table (8) shows all treatment affected significant differences ($p \leq 0.5$) by dietary inclusion of Roselle lead to decrease Omega – 3 w h e n dietary inclusion Roselle increase. Omega – 3 like C22H32O2 and C20H34O2. Omega – 3 recorded K3 had a highest level of (83.14), while K5 had lowest level of (32.70). (Ismail *et al.*, 2008) reported (ALA), Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) are excellent sources. Poultry meat has been considered as one of the main sources of PUFA for human diets n-3 PUFA such useful in reducing cholesterol Docosahexaenoic acid DHA C22H32O2.

Omega - 6

As the results in table (8) shows all treatments affected significant differences ($p \leq 0.5$) by dietary inclusion of Roselle lead to increase Omega – 6 w h e n dietary inclusion Roselle increase were recorded K7 had a highest level of (15.14), while the K5 had lowest level of (14.10) Omega – 6 compared with control (3.76). Omega – 6 like C20H32O2 and C19H34O2. The n-6 fatty acids are important, such as the Arachidonic acid (AA) is the most important n-6 PUFA because it is the primary precursor for the n-6 derived eicosanoids Both n-6 and n-3 fatty acids have been shown to have anti-inflammatory properties that are protective of atherosclerotic changes in vascular endothelial cells.

Omega-6/Omega-3

As the results in table (8) shows all treatments affected significant differences ($p \leq 0.5$) by dietary inclusion of Roselle lead to increase n-6/n-3 w h e n dietary inclusion Roselle increase were recorded k5 and K7 had a highest level of (.43), while the K3 had lowest level of (.17) compared with control (.23). Simopoulos, 2004) reported Polyunsaturated fatty acids contents of modern diets are low in n-3 fatty acids leading to high n-6/n-3 fatty acid ratios. The imbalance in the n-6 vs. n-3 proportion is responsible for the pathogenesis of many diseases, such as cardiovascular disease.

Omega - 9

As the results in table (8) shows all treatments affected significant differences ($p \leq 0.5$) by dietary inclusion of Roselle lead to decrease omega9 w h e n dietary inclusion Roselle increase were recorded K3 had a highest level of (47.80), while the K7 had lowest level of (1.27) compared with control (4.02). Omega-9 like C19H36O2 (Massaro *et al.*, 2002) reported Omega-9 is important Fatty Acids such as Oleic acid, (C18:1) C19H36O2 Its important in dietary it's the main function and mechanism is to reduce LDL cholesterol and to improve lipid profile Fatty acids also are classified into 3 groups short, medium, and long chain fatty acids. (Talukdar *et al.*, 2011). Long chain fatty acids (LCFAs) are fatty acids with aliphatic tails longer than 12 carbons, Medium chain fatty acids (MCFAs) are fatty acids with aliphatic tails between 6 and 12 carbons and Short chain fatty acids (SCFAs) are those carboxylic acids that contain aliphatic tails less than 6 carbon atoms.

Long Chain Fatty Acids (L.C.F. As)

As the results in table (8) shows all treatments showed significant differences ($p \leq 0.5$) by dietary inclusion of Roselle lead to decrease L.C.F. As w h e n dietary inclusion Roselle increase k3, k5 and k7 were recorded 100.00, 95.97 and 89.47 respectively. Observe lead to decrease long chain fatty acids like C14H30, C15H24O2, C15H30O2, C16H24O4, C16H48O8, C17H16N2, C17H36, C17H31F3O3, C17H32O2, C18H52O7, C18H54O7, C18H54O9, C19H36O2, C19H36O2, and increased levels of some long chain fatty acids like C17H34O2, C19H36O2, C19H34O2 and showed also increase in some very long chain fatty acids C20H34O2, C22H32O2, C26H52O2 and C26H52O2. (Bos *et al.*, 2016) reported that the docosahexaenoic acid (C226n-3) is indispensable for neuronal myelination, and it is an important precursor for the very long chain fatty acids synthesis found in the brain. It is also involved in neurogenesis, neurotransmission and protects the brain from the oxidative stress.

Medium Chain Fatty Acids (M.C. F. As)

As the results in table (8) shows all treatments showed differences ($p \leq 0.5$) where k3, k5 and k7 lead to decrease in medium chain (nil) while control showed the highest levels in both of tow acids (C10H8 and C11H24) which appeared in the samples. When our back to show table (4.3) to observe the effect of Roselle in finishing period. While 3%, 5%, and 7% compare 0% were high feed conversion to due obesity, that a agree with (Turner *et al.*, 2009) who reported Medium Chain Fatty Acids MCFAs have useful use against diabetes were observed to stimulate insulin secretion. Thus dietary supplementation with it was good for preventing obesity and insulin resistance.

Short Chain Fatty Acids (S.C.F. As)

As table (8) there was a presence of Propionic acid in the samples which produced in the gut via bacterial fermentation and functions as a central metabolite of odd chain fatty acid metabolism. (Wolever *et al.*, 1997) Highlighting some potential toxic effects of propionic acid, an autosomal recessive disease resulting from mutations in propionyl CoA carboxylase. As the results in table (9) shows all treatments showed significant differences ($p \leq 0.5$) where k5 and k7 lead to increase in short chain fatty acids and recorded high levels of short chain of fatty acids 3.81 and 10.52 respectively, while the treatment of k 3 recorded the lowest content of the short chain fatty acids (0.000) value as the control recorded. When our back to show table () to observe the effect of Roselle in finishing period While 3%, 5%, and 7% compare 0% were high fibre to due weight loss this agree with (Murphy *et al.*, 2010) reported that the relationship between gut flora, S. C. F. As production and obesity because a high fiber diet results in weight loss.

Table 7: Effect of Dietary Inclusion of Different Levels of Hibiscus Seeds on Broiler fatty acid profile

Fatty acid	Treatment				SE	Sig	
	K0	K3	K5	K7			
C3H8O3	.000 c	.000 c	3.81 b	10.52 a	K0.002	K3**	Glycerin
C10H8	.55 a	.000 b	.000 b	.000 b	.001	**	Naphtalene
C11H24	.47 a	.000 b	.000 b	.000 b	.001	**	Undecane
C12H24o2	2.39 a	.000 b	000 b	.000 b	.001	**	Lauric
C14H30	1.05 a	.000 b	.000 b	.000 b	.001	**	Tetradecane
C15H24O2	2.64a	.06d	2.28c	2.47b	.06	**	Butylated
C15H30O2	.000d	.39b	.33c	.60a	.005	**	Myristic
C16H24o4	.64 a	.000 b	.000 b	.000 b	.001	**	Brefedlin
C17H16N2	.45 a	.000 b	.000 b	.000 b	.001	**	Xinidamine
C17H31F3o3	.86 a	.000 b	.000 b	.000 b	.001	**	Pentadecane
C17H32O2	4.02 a	2.11 b	.000 c	.000 c	.004	**	Palmite oleic
C17H34O2	15.77 d	27.25 a	25.64 c	26.31 b	.006	**	Palmitic
C17H36	.38 a	.000 b	.000 b	.000 b	.001	**	Hepetadecane
C18H34O2	.000 b	45.66 a	,000 b	.000 b	.03	**	Elaideic
C18H36O2	.000 b	.03 a	.000 b	.000 b	.03	**	Stearic
C18H54o7	2.39 a	.000 b	.000 b	.000 b	.044	**	Phenol
C19H34O2	3.76 d	14.13 b	14.10 c	15.14 a	.006	**	Linoleic
C19H36O2	18.19 c	.53 d	43.18 a	35.18 b	.006	**	Oleic
C19H38O2	.000 d	9.63 a	6.73 c	8.48 b	.005	**	Nonadecyclic
C20H32O2	4.77 a	.000 c	1.49 b	.000 c	.002	**	Arachidonic
C20H38O2	.000 b	.000 b	1.97 a	.000 b	.001	**	Gad oleic
C20H40o2	1.15 a	.000 b	.000 b	.000 b	.001	**	Arachidic
C21H26O2	.947	.000	.000	.000	.165	NS	Menaquinol
C22H32O2	.000 b	.000 b	.24 a	.000 b	.001	**	Docosahexaenoic
C22H42O2	.000 b	.000 b	.000 b	1.29 a	.002	**	Cetoleic
C23H32o2	2.44 a	.000 b	.000 b	.000 b	.001	**	Eicosatrienoic
C26H50O2	.000 b	.12 a	.000 b	.000 b	.001	**	Ceronic
C26H52O2	.000 b	.09 a	.000 b	.000 b	.003	**	Cerotic

Calculated Data				
	K0	K3	K5	K7
S. C. FAs	0.00	0.00	3.81	10.52
M. C. FAs	1.02	0.00	0.00	0.00
L. C. FAs	64.34	100.0	95.97	89.47
T.S.FAs	16.67	83.14	32.70	35.39
T.U.S.FAs	7.78	61.93	16.07	16.43
M.U.S.FAs	4.02	47.80	1.97	1.29
P.U.S.FAs	3.76	14.13	14.10	15.14
E.FAs	24.45	145.0	48.77	51.82
Omega 3	16.67	783.14	32.70	35.39
Omega 6	3.76	14.13	14.10	15.14
Omega 9	4.02	47.80	1.97	1.29
Omega 6: Omega 3	.23	.17	.43	.43
P.U.S.FAs: T.S.FAs	.23	.17	.43	.43

Where: FAs: Fatty Acids, S.C. FAs: Short Chain Fatty Acids, M.C.FAs: Medium Chain Fatty Acids, L.C.F As: Long Chain Fatty Acids T.S. FAs: Total Saturated Fatty Acid, T.U.S.F. As: Total Unsaturated Fatty Acids, M.U.S.F. As: Mono-Unsaturated Fatty Acids, P.U.S.F. As: Poly-Unsaturated Fatty Acids, EFAs: Essential Fatty Acids.

Conclusions

Dietary Inclusion of different Levels of Hibiscus Seeds improved Broiler Fatty acid profile. Also, Hibiscus sabdariffa seeds supplementation reduced triglyceride and cholesterol in blood of broiler chicken there for it recommended to include Roselle seeds 3% and do not up to 7% in broiler diets.

References

1. Abd Aziz AR, Mat IA, Isa PM. Analisis kimia dan pemprosesan Roselle (Hibiscus sabdariffa L.). Mardi Research Bulletin. 1985; 13:68-74.
2. Abdalla AH. Effect of Feeding Roselle (Hibiscus sabdariffa L) Seed on some Reproductive Traits of Desert Sheep in Sudan. M.Sc. Thesis. Department of Meat Production and Technology. Faculty of Animal Production, University of Gezira, 2013.
3. Abu-Tarboush SB, Hamza M, Ahmed HA. Some nutritional properties of Karkade (Hibiscus sabdariffa) seed products. The American Association of Cereal Chemists Inc. 1997; 74:352-355.
4. Adam EH. Effects of Dietary of dehydrated leguminous - Based Forage on Broiler and Layers performance and their lipid profile PhD Thesis Department of poultry production Faculty of animal production university of Gezira Sudan, 2021.
5. Amer ShA, Al-Khalaifah HS, Gouda A 3, Osman A, Goda NI, Mohammed HA *et al*. Potential Effects of Anthocyanin-Rich Roselle (Hibiscus sabdariffa L.) Extract on the Growth, Intestinal Histomorphology, Blood Biochemical Parameters, and the Immune Status of Broiler Chickens. 11, 544. <https://doi.org/10.3390/antiox11030544> Academic Editors: Evangelos Zoidis and Stanley Omaye, 2022.
6. AOAC. Association of official analytical chemists. Official Methods of Analysis, 16th Edition 481 north Ferkid avenue Gaithersburg, Maryland, USA, 2005.
7. Aziza AA, Ferial MA, Esmat AA. Physicochemical Properties of Natural Pigments (Anthocyanin) Extracted from Roselle Calyces (Hibiscus sabdariffa), Journal of American Science. 2011; 7(7):445-456.
8. Bakheit MHE. The nutritional value of Roselle meal (Hibiscus sabdariffa) in laying hens diets. M. Sc. Thesis, Faculty of Anim. Prod. University of Khartoum, 1993.
9. Bakheit MHE. The nutritional value of Roselle meal (Hibiscus sabdariffa) in laying hens diets. M. Sc. Thesis, Faculty of Anim. Prod. University of Khartoum, 1993.
10. Bradberry JC, Hilleman DE. Overview of omega-3 fatty acid therapies. P & T: a peer-reviewed journal for formulary management. 2013; 35(11):681-91.
11. Cobley LS, An introduction to Botany of Tropical crops. Longman Group U.K. 11. Crane J. C Roselle - potentially important plant fibre. Econ Bot, 1975; 3:89-103. Composition and principal uses. Fruits; 64:179–193.
12. Costa EF, Miller BR, Pasti GM, Bakalli RI, Ewing HP. Studies on feeding peanut meal as a protein source for broiler chicken. Poultry Science. 2001; 80:306-313.
13. Donma M, Donma O. Beneficial Effects of Poultry Meat Consumption on Cardiovascular Health and the Prevention of Childhood Obesity. Namik Kemal University, Medical Faculty, Department of Pediatrics, Tekirdag, Turkey, 2017. DIO: 10.20900/mo 20170018
14. EL-Adawy TA, Khalil AH. Characteristics of Roselle (Hibiscus sabdariffa) seeds as a new source of protein and lipid. J. Agric. Food Chem. 1994; 42(9):1896-1900.
15. EL-toum HAE. Studies on the utilization of full-fat Roselle (Hibiscus sabdariffa) seed in broiler chick diets. M.Sc. thesis, Institute of Animal Production, University of Khartoum, 1992.
16. Hainida E, Amin I, Normah H, Mohamed E, N., Ainul Z. Effect of daffeted dried Roselle Hibiscus sabdariffa.)
17. Hassan EH. Evolution of Roselle (Karkadeh) Seeds (Hibiscus sabdariffa L.) as a source of Estrogenic Factors on Performance and Carcass Characteristics of Sudan Desert Sheep. PhD Thesis. Department of Animal production and technology Faculty of Animal Production University of Gezira Sudan, 2010.
18. Howe P, Meyer B, Record S, Baghurst K. Dietary intake of long-chain ω -3 polyunsaturated fatty acids: Contribution of meat sources. Nutrition. 2006; 22:47-53.
19. Huisman J, Tolman GH. Anti-nutritional factors in the plant protein diets for non- ruminants, Eds. P. C. Garn worthy, W. Haresign and D. J. A. Cole. In: Recent Advances in Animal Nutrition. Butterworths/Heinemann. London, 1990.
20. Ismail AE, Ikram HK, Nazri HSM. Roselle (Hibiscus sabdariffa L.) seeds—Nutritional composition, protein quality and health benefits. Food Global Science Book, 2008, 1-16.
21. Jain NC. Veterinary hematology 4 th Ed; (Lea and febriger. Philadelphia USA, 1986.
22. Lairon D. Dietary fibers Effects on lipid metabolism and mechanisms of action. Eur. J. Clin. Nutr. 1996; 50:125-133.
23. Mady C, Manuel D, Mama S. The bissap (Hibiscus sabdariffa L.), 2009.
24. Massaro M, De Caterina R. Vasculoprotective effects of oleic acid: epidemiological background and direct vascular anti atherogenic properties. Nutr. Metab. Cardiovasc Dis. 2002; 12:42-51.
25. Mclean K. Roselle (Hibiscus sabdariffa. L) or Karkadeh as cultivated edible plant AGS/SUD/70/543 project working paper. FAO, ROM, Italy, 1973.
26. Mohammed TA, Idris AA. Nutritive value of Roselle seed (Hibiscus sabdariffa) meal for broiler chicks. World Rev. Anim. Prod. 1991; xxvi(2):59-62.
27. Mukhtar AM. The effect of feeding Rosella (Hibiscussabdariffa) seed on Broiler Chick's Performance. Research Journal of Animal and Veterinary Sciences. 2007; 2:21-23.
28. Mukhtar AM, Bakheit. Effect of feeding diets containing Roselle seed (Hibiscus sabdariffa) with or without supplementation on broilers Performance, carcass trait and serum constituents Department of Animal Production- Sudan University of Science and Technology Khartoum North, Shambat. Egypt. Poult. Sci. 2012; 33(1):17-27.
29. Murphy EF, Cotter PD, Healy S. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010; 59:1635-42.
30. NRC. Nutrient requirements of poultry. 9thRev.Ed. National Academy press, Washington, DC, USA. 1994; 4:450-457.
31. Oloyede OB, Minari JB, Muhammad NO. Evaluation of Growth Characteristics and Haematological Indices of Broiler-chicks Fed Raw and Processed Bambara Groundnut Seed as a Component of Poultry Feed. International Journal of Poultry Science9. 2010; (7):652-655.

32. Owosibo AO, Okere IA, Adedokun CA. Effect of graded levels of raw Roselle (*Hibiscus sabdariffa*. L) seed meal on performance, carcass characteristics and meat quality traits of broiler chickens. *Nigerian Journal of Animal Production*. 2017; 44(1):141-150.
33. Peng WL. Optimization of Roselle seed in supercritical carbon dioxide. A thesis MSc. School of Chemical and Energy Engineering. Faculty of Engineering. Universiti Teknologi Malaysia, 2019.
34. Richmond W. Preparation and properties of cholesterol oxidase from *Nocardia* Sp. and its application to enzymatic assay of total cholesterol in serum. *Clin. Chem.* 1973; 19:1350-1356.
35. Salih GE.. The economic and social effects of the disposed fishes by the White Nile River Ravines at Edweim Area (Central Sudan) on Rural when used as fish meal in poultry feeds. Paper presented at 5thinternational poultry Conference, Taba, Egypt, 2009.
36. Schalm JW, Jain NC, Carol EJ. Veterinary. 3Edn. Lea and febriger. Philadelphia, USA, 1975; 15-81.
37. Simopoulos A. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. *Food Rev Int.* 2004; 20:77-90.
38. Singh P, Khan M, Hailemariam H. Nutritional and Health Importance of *Hibiscus sabdariffa*: a review and indication for research needs. *J Nutr Health Food Eng.* 2017; 6(5):125-128. DOI: 10.15406/jnhfe.2017.06.00212
39. Talukdar S, Olefsky JM, Osborn O. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and in-flammatory diseases. *Trends Pharmacol Sci.* 2011 32:543-50.
40. Trinder P. Ann. Clin. Biochem. 6:24.ts A review of ingredient evaluation strategies for aquaculture feeds. *Aquaculture Nutrition.* 1969; 13:17-34.
41. Turner N, Hariharan K, Tidang J, Frangioudakis G, Beale SM, Wright LE. Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species-dependent: potent tissue-specific effects of medium chain fatty acids. *Diabetes.* 2009; 58:2547-54.
42. WHO/FAO. (2003). Available at: Expert Consultation. Diet, nutrition and the prevention of chronic diseases. Geneva, Switzerland: World Health Organization; http://www.who.int/hpr/NPH/docs/who_fao_expert_report.pdf
43. Wolever TM, Josse RG, Leiter LA, Chiasson JL. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. *Metabolism.* 1997; 46:805-11.