

Detour Dominating Sets in Cartesian Product of Three Graphs

^{*1} Y Sherlin Nisha, ²V Rajeswari and ³Y Merlin Nisha

^{*1,2} Associate Professor, Department of Mathematics, Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India.

³ Assistant Professor, Department of Education, CSI College of Education, Parassala, Kerala, India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 21/March/2025

Accepted: 23/April/2025

Abstract

A dominating set for a graph G is a subset S of $V(G)$ such that every vertex not in S is adjacent in S is at least one vertex of S . In this paper presented the detour domination in Cartesian product of three graphs. In the Cartesian product of three graphs, we examine detour dominating sets, which are represented as $G \times H \times K$. We investigate the structural characteristics of these products and determine precise values and constraints for the detour domination number in a number of graph classes, such as paths, cycles, and complete graphs. Additionally, we look at how the detour domination number of the product graph is affected by the distinct characteristics of $G \times H \times K$. Our findings provide insights into how dominance parameters behave in more intricate graph structures, expanding on previous research on detour domination for single and double Cartesian products.

*Corresponding Author

Y Sherlin Nisha

Associate Professor, Department of Mathematics, Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India.

Keywords: Detour index, Domination number, maximum distance, elongated path.

Introduction

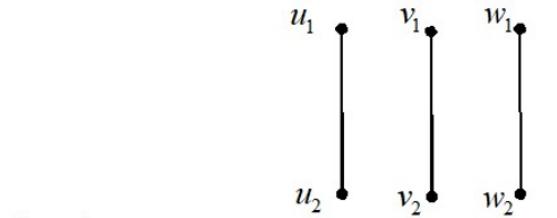
A graph G is a simple connected graph and finite. A graph G is a collection of points and lines represents vertices and edges of the graph denoted by $V(G)$ and $E(G)$. A set S of vertices in a connected graph $G = (V, E)$ is called a detour set if every vertex not in S lies on a longest path between two vertices from S . A set S of vertices in G is called a dominating set of G if every vertex not in S has at least one neighbor in S . A set S is a dominating set if every vertex $u \in V - S$ lies on a longest path between two vertices from S .

A set S of vertices in G is called a detour dominating set of G if every vertex not in S has at least one neighbor in S . A detour dominating set D in G is a minimal detour dominating set if no proper subset of D is a dominating set. The minimum cardinality among all the minimal detour dominating set is called detour domination number of the graph G denoted by $\gamma_D(G)$

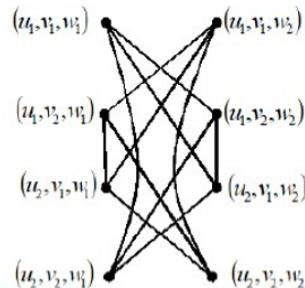
Definition: Cartesian product

Let $G_1(VG_1, EG_1)$ and $G_2(VG_2, EG_2)$ be two simple connected graphs. The Cartesian product of G_1 and G_2 denoted by $G_1 \times G_2$ is a graph with vertex set $VG_1 \times VG_2$, where two vertices (u_1, v_1) and (u_2, v_2) are adjacent if $u_1 = u_2$ and $v_1v_2 \in E(G_2)$ or $v_1 = v_2$ and $u_1u_2 \in E(G_1)$. This definition was further extended as second and third dimensional product of vertex measurable graphs. That is $G_1(VG_1, EG_1), G_2(VG_2, EG_2)$ and $G_3(VG_3, EG_3)$ be three simple connected graph. The third dimensional product of vertex measurable graph of G_1, G_2 and G_3 denoted by $G_1 \times G_2 \times G_3$ is a graph $V(G_1) \times V(G_2) \times V(G_3)$, where two vertices (u_1, v_1, w_1) and (u_2, v_2, w_2) are adjacent if $u_1 = u_2$ and $v_1v_2 \in E(G_2)$ and $w_1w_2 \in E(G_3)$ or $v_1 = v_2$ and $u_1u_2 \in E(G_1)$ and $w_1w_2 \in E(G_3)$ or $w_1 = w_2$ and $u_1u_2 \in E(G_1)$ and $v_1v_2 \in E(G_2)$. In this paper we cover all the possibilities of connecting the vertices using the concept of Cartesian product of three graphs.

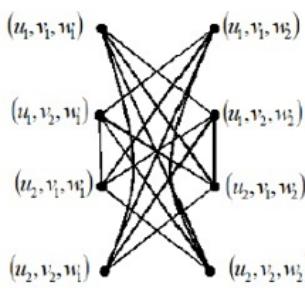
Consider the graphs $G_1 = G_2 = G_3 = K_2$. Then the Cartesian product of three graphs G_1, G_2 and G_3 is given by the following cases:



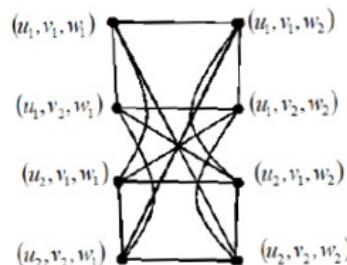
Case 1:



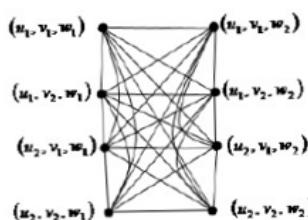
Case 6:



Case 7:



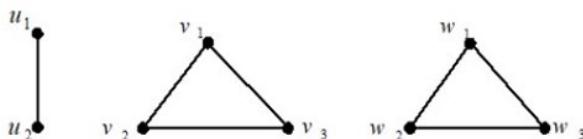
Case 9: The graph obtained is a complete graph.



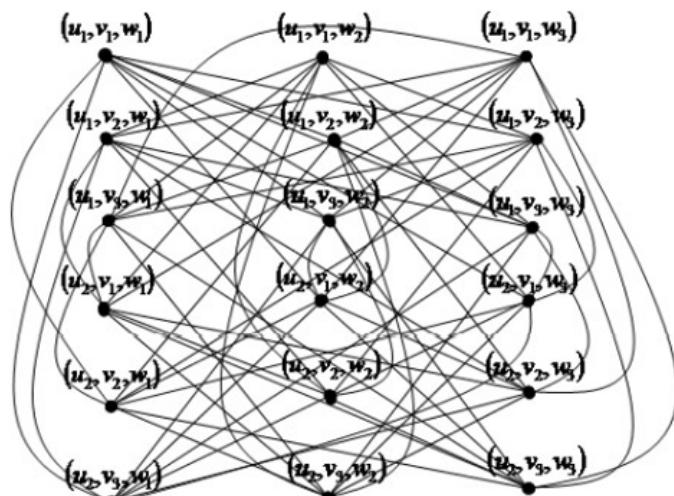
The graphs obtained in the above cases are non-isomorphic in nature. This shows that each case is a unique way of connecting the vertices given graphs G_1, G_2, G_3 .

The concept of detour dominating set have been introduced in recent past by [3]. It is very interesting to investigate detour domination number of a graph as the detour domination numbers of very few graphs are known. Vaidya and Mehta [6] have derived detour domination number of degree splitting graph and helm graph while detour domination number of

some cycle related graphs are discussed by Vaidya and Karkar [6]. The application of Cartesian product can be found in coding theory. Throughout this paper G means a finite, undirected graph without multiple edges or loops. Also K_n, P_n, C_n represents complete graphs paths and cycles with n vertices respectively.



Cartesian product of three complete graphs, $K_2 \times K_3 \times K_3$ in (a) is shown by



References

1. Wiener H. Structural determination of paraffin boiling points, *J. Am. Chem. Soc.* 1947; 69:17-20.
2. Buckley F, Harary F. *Distance in Graphs*; Addison-Wesley: Reading, MA, 1990, 213-214.
3. Chartrand G, Haynes TW, Henning MA, Zhang P. Detour domination in graphs, *Ars Combinatoria*. 2004; 71:149-160.
4. John J, Arianayagam N. The detour domination number of a graph, *Discrete Mathematics, Algorithms and Applications*. 2017; 9(1).
5. Chartrand G, Johns GL, Tian S. Detour Distance in Graphs, *Annals of Discrete Math.* 1993; 55:127-136.
6. Vaidya SK, Mehta RN. On detour domination in graphs, *International Journal of Mathematics and Scientific Computing*. 2016; 11:397-407.
7. Dankelmann P, Gutman I, Mukwembi S, Swart H. The edge-Wiener index of a graph, *Discrete Mathematics*. 2009; 309(10):3452-3457.
8. Chen S, Liu W. Extremal modified Schultz index of bicyclic graphs," *MATCH. Communications in Mathematical and in Computer Chemistry*. 2010; 64(3):767-782.
9. Chen S, Liu W. Extremal unicyclic graphs with respect to modified Schultz index, *Utilitas Mathematica*. 2011; 86(3):87-94.
10. Ivanciu O, Balaban AT. Design of Topological Indices. Part 8. Path Matrices and Derived Molecular Graph Invariants, *MATCH Commun. Math. Comput. Chem.* 1994; 30:141-152.
11. Lukovits I. The Detour Index, *Croat. Chem. Acta*. 1996; 69:873-882.
12. Lukovits I. Indicators for Atoms Included in Cycles. *J. Chem. Inf. Comput. Sci.* 1996; 36:65-68.
13. Lukovits I, Razinger M. On calculation of the detour index, *J. Chem. Inf. Comput. Sci.* 1997; 37:283-286.