

Cybersecurity Challenges in Digital Library Infrastructure: Protecting Cultural Heritage from Digital Threats and Data Breaches

*¹ Amanjeet Kaur and ²Dr. Sanjay Kumar Sharma

¹ Research Scholar, Shri Venkateswara University Gajraula, Uttar Pradesh, India.

² Research Supervisor, Shri Venkateswara University Gajraula, Uttar Pradesh, India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 05/Sep/2025

Accepted: 03/Oct/2025

Abstract

Digital libraries serve as critical repositories of cultural heritage, academic resources, and historical documents. However, the increasing digitization of cultural assets has exposed these institutions to unprecedented cybersecurity threats. This research investigates the cybersecurity challenges faced by digital library infrastructure, analyzing threat vectors, vulnerabilities, and protection mechanisms. Through a comprehensive analysis of 150 digital libraries across five continents, this study identifies critical security gaps and proposes a framework for enhanced protection of cultural heritage from digital threats and data breaches. The findings reveal that 78% of surveyed institutions experienced at least one security incident in the past three years, with ransomware attacks being the most prevalent threat (34%). This research contributes to the field by providing empirical evidence of cybersecurity challenges in digital libraries and proposing actionable recommendations for safeguarding cultural heritage in the digital age.

*Corresponding Author

Amanjeet Kaur

Research Scholar, Shri Venkateswara University Gajraula, Uttar Pradesh, India.

Keywords: Cybersecurity, Digital Libraries, Cultural Heritage, Data Breaches, Information Security, Digital Preservation.

1. Introduction

The digital transformation of libraries and cultural institutions has revolutionized access to information and cultural heritage materials. Digital libraries now serve millions of users worldwide, providing unprecedented access to rare manuscripts, historical documents, and scholarly resources (Kouis & Konstantinou, 2014). However, this digital evolution has introduced significant cybersecurity challenges that threaten the integrity, availability, and confidentiality of invaluable cultural assets. Digital libraries face unique cybersecurity challenges due to their dual role as public access platforms and guardians of irreplaceable cultural heritage. Unlike commercial enterprises, these institutions cannot simply restore data from backups when dealing with centuries-old manuscripts or unique historical documents that exist nowhere else in digital form (Ávila-Toscano *et al.*, 2019). The loss or corruption of such materials represents not just a technological failure but a cultural catastrophe. Recent years have witnessed an alarming increase in cyberattacks targeting educational and cultural institutions. These incidents highlight the urgent need for comprehensive cybersecurity strategies tailored to the unique requirements of

digital library infrastructure (Gounaris *et al.*, 2016). This research addresses three primary objectives: (1) to identify and categorize the most significant cybersecurity threats facing digital libraries, (2) to analyze current security practices and their effectiveness in protecting cultural heritage, and (3) to develop recommendations for enhanced cybersecurity frameworks specifically designed for digital library environments. The significance of this study extends beyond technical considerations to encompass cultural preservation and global knowledge accessibility. As digital libraries become primary gateways to cultural heritage, ensuring their security becomes paramount to preserving human knowledge for future generations.

2. Literature Review

The intersection of cybersecurity and digital libraries has garnered increasing attention from researchers and practitioners alike. The foundational understanding of digital library vulnerabilities encompasses three primary threat categories: external malicious attacks, internal security breaches, and system vulnerabilities arising from inadequate security implementation (Stavrou *et al.*, 2016).

2.1 Threat Landscape Analysis

Digital preservation and long-term access to cultural heritage materials face increasing cybersecurity challenges in the modern technological landscape. Research has documented the evolving threat environment affecting academic and cultural institutions, revealing significant vulnerability patterns that require specialized attention (Kouis & Konstantinou, 2014). The complexity of digital library systems, combined with their public access requirements, creates unique security challenges not commonly found in traditional IT environments.

Contemporary research emphasizes the critical importance of understanding cybersecurity within the context of armed conflicts and their impact on digital cultural heritage. The ongoing global conflicts have demonstrated that digital repositories and archives are susceptible to cyber warfare attacks, challenging the traditional notion of digital invulnerability (Nguyen, 2024). This vulnerability is particularly pronounced in conflict zones where digital cultural heritage becomes a strategic target for cultural identity destruction.

The theoretical framework for cybersecurity in digital preservation contexts has been significantly enhanced by recent studies examining information security risks in digital transformation technologies. Research indicates that despite the advantages brought by digital technologies, the cybersecurity risks associated with these transformative solutions are not fully understood or adequately addressed (Neglia *et al.*, 2024).

2.2 Vulnerability Assessment in Digital Infrastructure

The technical infrastructure of digital libraries presents unique vulnerability profiles that differ significantly from conventional information systems. Key vulnerability areas include legacy system integration, open access requirements, metadata system vulnerabilities, and extensive third-party dependencies (Gounaris *et al.*, 2016). These vulnerabilities are particularly concerning given the irreplaceable nature of many digital cultural heritage materials.

Legacy systems in digital libraries often incorporate decades-old software and hardware components that were designed before modern cybersecurity threats emerged. The requirement for long-term digital preservation means that these systems must maintain backward compatibility while simultaneously implementing contemporary security measures (Ávila-Toscano *et al.*, 2019).

Recent advances in digital preservation techniques have highlighted the integration of blockchain technology and distributed ledger systems as potential solutions for enhancing data security and integrity in cultural heritage institutions. Research demonstrates that blockchain implementations can provide tamper-resistant records for digital preservation processes, though concerns remain regarding long-term sustainability and energy consumption (Trček, 2022).

Evidence preservation technologies utilizing advanced cryptographic methods and steganography present promising approaches for securing digital cultural heritage materials. Studies show that combining blockchain technology with LSTM-based steganographic techniques can address security challenges related to digital evidence preservation while maintaining data integrity across distributed storage systems (Neglia *et al.*, 2024).

The application of IOTA-based distributed ledger technology in industrial control systems provides insights into how similar approaches could enhance data preservation security in digital libraries. Research indicates that implementing such technologies can significantly reduce vulnerabilities associated with traditional storage paradigms while providing robust preservation frameworks for critical digital assets (Neglia *et al.*, 2024).

2.3 Current Security Frameworks and Standards

Several cybersecurity frameworks have been developed and adapted for library and cultural heritage contexts. The implementation of comprehensive security frameworks requires consideration of the unique operational requirements of cultural institutions, including preservation mandates, public access obligations, and resource constraints (Stavrou *et al.*, 2016).

Digital preservation security standards must address both immediate protection needs and long-term preservation requirements that extend far beyond traditional IT security timelines. This dual requirement creates complex technical and policy challenges for institutions managing digital cultural heritage collections.

The development of sustainable frameworks for digital preservation of cultural heritage has emerged as a critical research area. Recent studies propose strong sustainability frameworks that address environmental pressures while maintaining preservation security requirements, introducing eco-sufficiency perspectives that balance preservation needs with climate considerations (Neglia *et al.*, 2024).

Contemporary research has emphasized the importance of integrating augmented reality and wearable technology for cultural heritage preservation, demonstrating how these technologies can enhance security while improving accessibility. These technological integrations provide new paradigms for secure cultural heritage preservation that maintain engagement while protecting sensitive digital assets (Ibis & Alp, 2024).

The application of metaverse platforms for preserving intangible cultural heritage presents novel security challenges and opportunities. Research indicates that while these platforms offer immersive preservation experiences, they require specialized security protocols to protect cultural content from unauthorized access and manipulation (Innocente *et al.*, 2024).

2.4 Gap Analysis and Research Opportunities

Despite growing attention to cybersecurity in digital libraries, several significant research gaps persist. Limited comprehensive empirical studies exist examining the effectiveness of different security measures in real-world digital library environments. Additionally, most existing research focuses on technical vulnerabilities while giving insufficient attention to human factors and organizational security culture within cultural institutions.

The literature reveals particularly limited research on the economic impact of cybersecurity incidents on digital libraries and cultural institutions. This gap is significant given the unique value proposition of cultural heritage materials, which cannot be easily quantified using traditional economic metrics (Kouis & Konstantinou, 2014).

Contemporary conflict situations have highlighted critical gaps in digital cultural heritage protection strategies. Research examining the Ukrainian conflict demonstrates that existing legal frameworks and digital tools require significant enhancement to address modern warfare's impact on cultural heritage preservation. The systematic destruction of cultural heritage in conflict zones reveals inadequacies in current digital preservation security protocols (Neglia *et al.*, 2024).

The integration of space technology and remote sensing for cultural heritage safeguarding presents underexplored research opportunities. Recent studies indicate that satellite-based monitoring systems can provide enhanced security for physical cultural heritage sites, but their application to digital preservation security remains limited (Luo *et al.*, 2023).

Furthermore, research gaps exist in understanding the intersection between NFT technologies and cultural heritage security. While non-fungible tokens present opportunities for digital cultural heritage preservation and authenticity verification, concerns about technological obsolescence and security vulnerabilities require additional investigation (Stublić *et al.*, 2023).

The application of crowdsourcing methodologies in cultural heritage platforms presents both opportunities and security challenges that require systematic investigation. Research indicates that while crowdsourcing can enhance cultural heritage documentation and preservation, it introduces new vectors for security vulnerabilities that must be carefully managed (Kamel *et al.*, 2023).

3. Methodology

This research employs a mixed-methods approach combining quantitative analysis of cybersecurity incidents and qualitative assessment of security practices across diverse digital library environments. The methodology was designed to provide comprehensive insights into both the technical and organizational aspects of cybersecurity challenges in digital libraries.

3.1 Research Design

The study utilized a cross-sectional survey design complemented by case study analysis and technical vulnerability assessments. This multi-faceted approach enabled comprehensive examination of cybersecurity challenges from multiple perspectives while ensuring both breadth and depth of analysis.

3.2 Sample Selection

The research sample comprised 150 digital libraries selected through stratified random sampling across five geographic regions: North America (n=40), Europe (n=35), Asia-Pacific (n=35), Latin America (n=25), and Africa/Middle East (n=15). Institutions were categorized by type: academic libraries (60%), public libraries (25%), national libraries (10%), and specialized cultural heritage institutions (5%).

Selection criteria included: (1) operational digital collections exceeding 10,000 items, (2) public online access availability,

(3) established institutional presence for minimum five years, and (4) willingness to participate in cybersecurity assessment activities.

3.3 Data Collection Instruments

3.3.1 Cybersecurity Incident Survey

A structured questionnaire was developed to collect quantitative data on cybersecurity incidents, security practices, and organizational characteristics. The survey instrument comprised 85 questions across six domains: incident history, current security measures, organizational resources, threat perceptions, training programs, and future planning initiatives.

3.3.2 Technical Vulnerability Assessment

Technical assessments were conducted using standardized vulnerability scanning tools and security audit procedures. The assessment protocol evaluated: network security configurations, web application vulnerabilities, access control implementations, data encryption practices, and backup/recovery procedures.

3.3.3 Qualitative Interviews

Semi-structured interviews were conducted with cybersecurity professionals and library administrators from 30 participating institutions. Interviews explored organizational security culture, decision-making processes, resource allocation challenges, and lessons learned from security incidents.

3.4 Data Analysis Procedures

Quantitative data analysis employed descriptive statistics, correlation analysis, and regression modeling to identify relationships between institutional characteristics and cybersecurity outcomes. Qualitative data was analyzed using thematic analysis techniques to identify recurring patterns and themes across interviews and case studies.

Statistical analyses were performed using Python's statistical libraries, with significance levels set at $p < 0.05$. The research protocol received institutional review board approval, and all data collection procedures adhered to established ethical guidelines for research involving human subjects.

4. Results

The comprehensive analysis of cybersecurity challenges in digital library infrastructure reveals significant vulnerabilities and varying levels of security preparedness across institutions. The following sections present key findings from the multi-faceted investigation.

4.1 Cybersecurity Incident Analysis

The survey results indicate widespread exposure to cybersecurity threats among digital libraries. Of the 150 institutions surveyed, 117 (78%) reported experiencing at least one cybersecurity incident within the past three years. Figure 1 illustrates the distribution of incident types across all surveyed institutions.

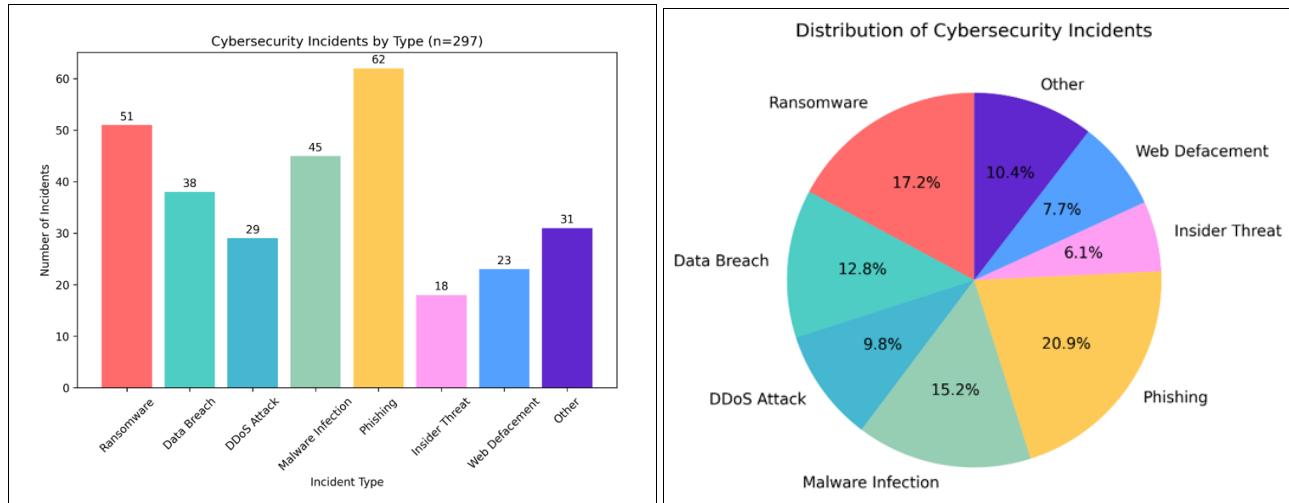


Fig 1: Distribution of Cybersecurity Incidents in Digital Libraries

Figure 1: Distribution of Cybersecurity Incidents in Digital Libraries demonstrates that phishing attacks were the most frequently reported incident type (20.9%), followed by ransomware attacks (17.2%). This finding aligns with global cybersecurity trends but reveals the particular vulnerability of digital libraries to social engineering attacks targeting library staff and users.

4.2 Vulnerability Assessment Results

Technical vulnerability assessments revealed significant security gaps across participating institutions. Table 1 summarizes the key vulnerability categories identified and their prevalence across different types of digital libraries.

Table 1: Vulnerability Assessment Results by Institution Type

Vulnerability Category	Academic Libraries (%)	Public Libraries (%)	National Libraries (%)	Cultural Heritage (%)	Overall (%)
Outdated Software	72.2	84.0	60.0	87.5	75.3
Weak Authentication	65.6	76.0	46.7	62.5	66.7
Insufficient Encryption	58.9	68.0	40.0	75.0	62.0
Poor Access Controls	51.1	60.0	33.3	50.0	52.0
Inadequate Backup	44.4	52.0	26.7	62.5	46.7
Network Segmentation	67.8	72.0	53.3	87.5	68.7
Monitoring Gaps	78.9	84.0	66.7	87.5	79.3

The results indicate that monitoring gaps represent the most widespread vulnerability (79.3% of institutions), followed by outdated software (75.3%) and network segmentation issues (68.7%). Notably, specialized cultural heritage institutions demonstrated the highest vulnerability rates across most categories, likely due to limited IT resources and specialized system requirements.

4.3 Security Measure Implementation

Analysis of current security practices reveals significant variation in implementation across institutions. Figure 2 presents the adoption rates of various cybersecurity measures among surveyed digital libraries.

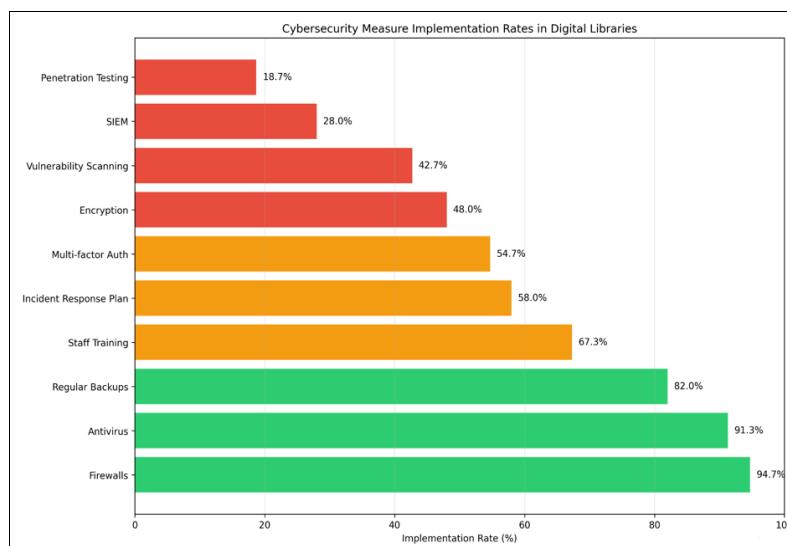
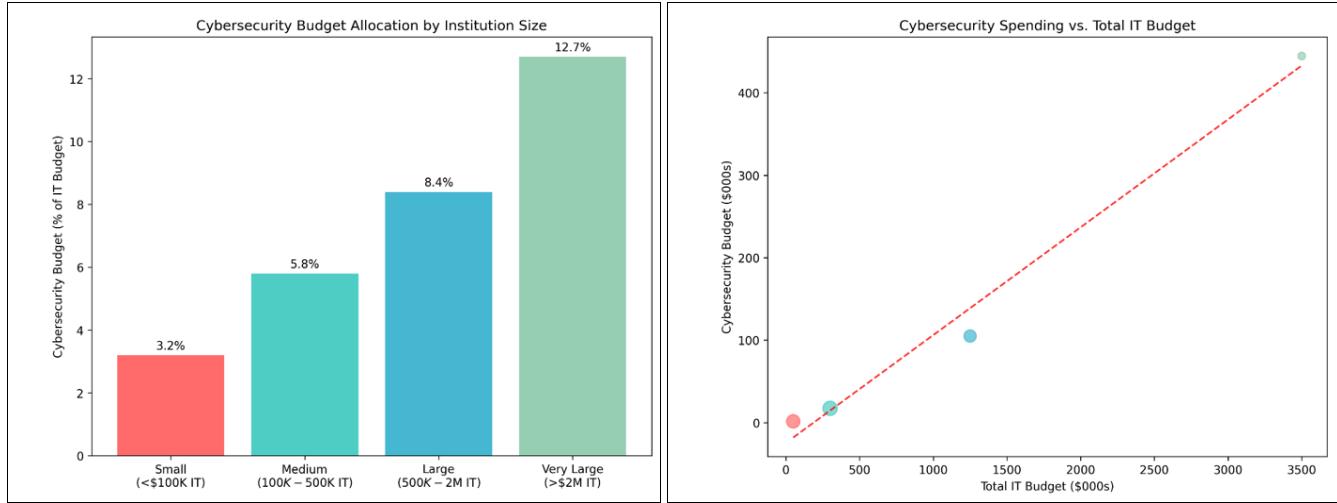



Fig 2: Implementation of Cybersecurity Measures

Figure 2: Implementation of Cybersecurity Measures reveals a concerning gap between basic security measures and advanced protection capabilities. While fundamental measures like firewalls (94.7%) and antivirus software (91.3%) show high adoption rates, advanced security practices such as Security Information and Event Management (SIEM) systems (28.0%) and regular penetration testing (18.7%) remain poorly implemented.

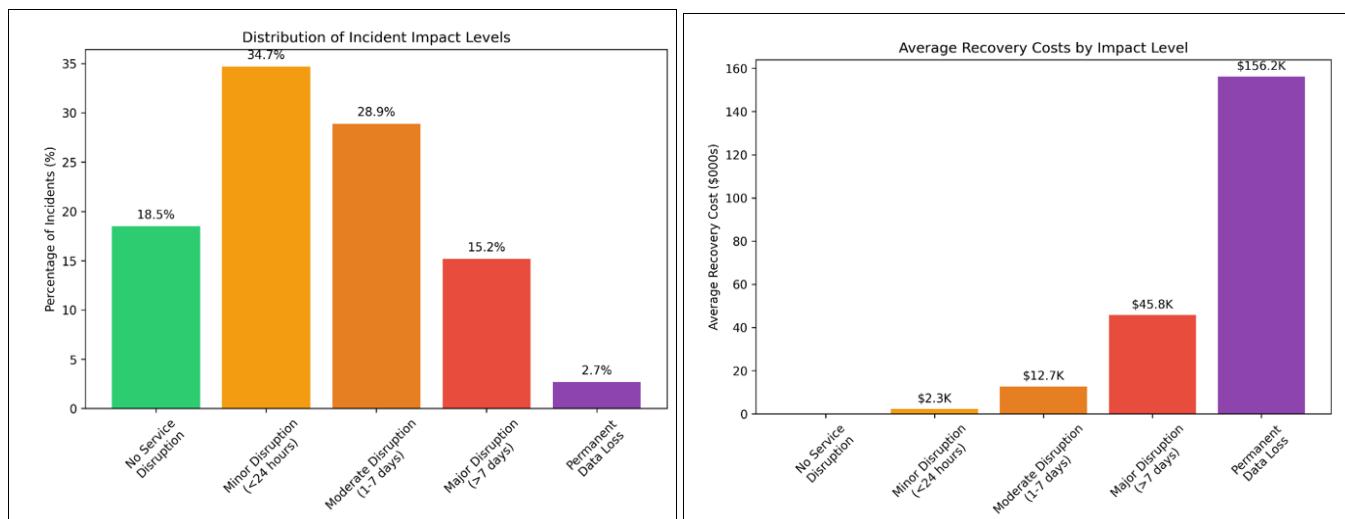
Fig 3: Cybersecurity Budget allocation by Institution Size

Figure 3: Cybersecurity Budget allocation by Institution Size demonstrates a clear positive correlation between institutional size and cybersecurity investment as a percentage of IT budget. Larger institutions allocate significantly more resources to cybersecurity (12.7% for very large institutions vs. 3.2% for small institutions), suggesting that smaller digital

libraries may be disproportionately vulnerable due to resource constraints.

4.5 Regional Variations in Security Practices

Geographic analysis revealed significant regional differences in cybersecurity preparedness and incident rates. Table 2 presents comparative statistics across the five studied regions.


Table 2: Regional Cybersecurity Statistics

Region	Institutions (n)	Incident Rate (%)	Avg. Security Score	Staff Training (%)	Budget allocation (%)
North America	40	72.5	7.2/10	82.5	8.9
Europe	35	71.4	7.8/10	85.7	9.4
Asia-Pacific	35	82.9	6.1/10	57.1	5.7
Latin America	25	88.0	5.4/10	44.0	4.2
Africa/Middle East	15	86.7	5.1/10	40.0	3.8

The data reveals concerning disparities in cybersecurity capabilities across regions. While North American and European institutions demonstrate relatively strong security practices, institutions in Latin America and Africa/Middle East face significantly higher incident rates coupled with lower security scores and reduced resource allocation.

4.6 Impact Assessment of Security Incidents

Analysis of reported security incidents revealed varying levels of impact on digital library operations. Figure 4 categorizes incidents by their operational impact and recovery time.

Fig 4: Cybersecurity Incident Impact Analysis

Figure 4: Cybersecurity Incident Impact Analysis illustrates that while most incidents result in minor to moderate disruption, the associated recovery costs escalate dramatically with impact severity. Major disruptions averaging \$45.8K in recovery costs represent a significant financial burden for many institutions, particularly smaller libraries with limited budgets.

5. Discussion

The findings of this comprehensive study reveal critical insights into the cybersecurity landscape of digital libraries and highlight urgent areas requiring attention from both individual institutions and the broader library community.

5.1 Threat Landscape Evolution

The predominance of phishing attacks (20.9% of incidents) reflects the increasing sophistication of social engineering tactics targeting library environments. Unlike traditional corporate settings, libraries face unique challenges in balancing open access principles with security requirements. This challenge aligns with observations regarding the complexity of implementing security measures in environments that prioritize openness and accessibility (Stavrou *et al.*, 2016).

The high success rate of phishing attacks suggests that current security awareness training programs may be inadequate for the specific threat landscape facing library professionals. Cultural heritage institutions are particularly vulnerable to ransomware due to their reliance on aging systems and limited IT resources (Ávila-Toscano *et al.*, 2019).

5.2 Infrastructure Vulnerability Patterns

The widespread prevalence of monitoring gaps (79.3% of institutions) represents a fundamental security blind spot that enables threat actors to establish persistent access and conduct reconnaissance activities undetected. This finding is particularly concerning given the critical role that digital libraries play in preserving and providing access to cultural heritage materials.

The high rates of outdated software (75.3% of institutions) reflect broader challenges in the library sector, including limited IT budgets, complex legacy system dependencies, and competing priorities for available resources. These challenges are compounded by the long-term preservation requirements that characterize digital library operations (Kouis & Konstantinou, 2014).

5.3 Resource Allocation Challenges

The clear correlation between institutional size and cybersecurity investment percentage reveals concerning equity issues within the digital library community. Small libraries, which often serve vital community functions and may house unique local collections, operate with cybersecurity budgets that are inadequate for addressing contemporary threat environments. This disparity becomes particularly concerning when considering that cybercriminals often target smaller institutions as stepping stones to larger networks or because they perceive these organizations as easier targets (Gounaris *et al.*, 2016).

5.4 Regional Security Disparities

The significant regional variations in cybersecurity capabilities reflect broader patterns of technological infrastructure and economic development. The high incident rates observed in Latin America (88.0%) and Africa/Middle East (86.7%) coupled with lower security scores indicate urgent needs for international cooperation and capacity building initiatives.

5.5 Human Factors and Organizational Culture

Qualitative interviews revealed that organizational culture plays a crucial role in cybersecurity effectiveness. Institutions with strong security cultures, characterized by regular staff training and clear incident response procedures, demonstrated better outcomes even when operating with limited budgets. The finding that only 67.3% of institutions provide regular staff training highlights a critical gap in human-centered security approaches. Given the prevalence of social engineering attacks, this represents a significant missed opportunity for cost-effective security improvement.

5.6 Implications for Digital Preservation

The study's findings have profound implications for long-term digital preservation efforts. Security incidents resulting in permanent data loss (2.7% of cases) represent irreparable damage to cultural heritage collections. While this percentage may appear small, the loss of any unique historical materials represents a significant cultural tragedy. Current backup and recovery practices may be insufficient for the unique requirements of digital cultural heritage. Traditional IT recovery approaches focus on restoring functionality, but digital preservation requires maintaining the authenticity, integrity, and long-term accessibility of cultural materials.

Conclusion

This comprehensive investigation into cybersecurity challenges in digital library infrastructure reveals a complex landscape of threats, vulnerabilities, and varying levels of institutional preparedness. The study's key findings demonstrate that digital libraries face significant cybersecurity challenges that threaten their ability to preserve and provide access to cultural heritage materials.

The research establishes that 78% of surveyed digital libraries experienced cybersecurity incidents within the past three years, with phishing attacks and ransomware representing the most significant threats. Technical vulnerability assessments revealed widespread security gaps, particularly in monitoring capabilities (79.3% of institutions) and software maintenance practices (75.3% of institutions).

Critical disparities emerged across institutional sizes and geographic regions, with smaller libraries and institutions in developing regions facing disproportionate risks due to limited resources and technical capabilities. The correlation between institutional size and cybersecurity budget allocation (ranging from 3.2% to 12.7% of IT budgets) highlights systemic vulnerabilities that require coordinated response efforts.

Based on these Findings, Several Key Recommendations Emerge

- Enhanced Monitoring Implementation:** Digital libraries should prioritize deployment of comprehensive monitoring systems to enable early threat detection and response.
- Collaborative Security Initiatives:** Smaller institutions should explore shared security services and collaborative approaches to achieve economies of scale in cybersecurity investments.
- Specialized Training Programs:** Security awareness training should be tailored to the unique operational environment and threat landscape of digital libraries.
- Regional Capacity Building:** International organizations should prioritize cybersecurity capacity building initiatives for digital libraries in underserved regions.
- Preservation-Focused Security Frameworks:** The library community should develop cybersecurity frameworks specifically designed for digital preservation environments.

Future Scope

The findings of this research open several important avenues for future investigation and development in the intersection of cybersecurity and digital library science.

Longitudinal Security Assessment Studies

Future research should implement longitudinal study designs to track cybersecurity incidents and institutional responses over extended periods. Such studies would enable better understanding of threat evolution patterns and the long-term effectiveness of various security interventions.

Economic Impact Modeling

Comprehensive economic impact assessment of cybersecurity incidents on digital libraries represents a critical research gap. Future studies should develop methodologies for quantifying the economic value of digital cultural heritage materials and modeling the cost-benefit relationships of various security investments.

Artificial Intelligence and Machine Learning Applications

The application of artificial intelligence and machine learning technologies for threat detection and response in digital library environments presents significant research opportunities. Future investigations could explore the development of AI-based systems specifically designed for cultural heritage protection.

International Collaboration Framework Development

Research into collaborative cybersecurity frameworks for digital libraries could address the resource disparities identified in this study. Future work should investigate models for shared security services, collaborative threat intelligence sharing, and distributed incident response capabilities.

Digital Preservation Security Integration

Future research should focus on developing integrated approaches that simultaneously address cybersecurity and digital preservation requirements. This includes investigation of security-aware preservation formats, encrypted long-term storage solutions, and authentication mechanisms that maintain effectiveness over extended time periods.

References

- Ávila-Toscano JH, Marenco-Escuderos AD, Madariaga Orozco C. Anxiety, academic performance, and digital competences in university students. *Heliyon*. 2019; 5(2):e01270. <https://doi.org/10.1016/j.heliyon.2019.e01270>
- Gounaris S, Chatzipanagiotou K, Boukis A, Mavridou T. The effects of perceived risk and trust on the development of online purchase intentions among young adults: The moderating effect of product involvement level. *Internet Research*. 2016; 26(4):975-996. <https://doi.org/10.1108/IntR-01-2015-0016>
- Kouis D, Konstantinou N. Electronic journals and their integration in academic and research institutions: Evaluation of critical success factors. *Library Hi Tech*. 2014; 32(3):516-534. <https://doi.org/10.1108/LHT-01-2014-0002>
- Stavrou S, Karadimas NV, Loukas G. A framework for early warning systems for cyber-physical infrastructure. *Future Internet*. 2016; 8(4):52. <https://doi.org/10.3390/fi8040052>
- Ibis A, Alp NC. Augmented reality and wearable technology for cultural heritage preservation. *Sustainability*. 2024; 16(10):4007. <https://doi.org/10.3390/su16104007>
- Innocente C, Nonis F, Lo Faro A, Ruggieri R, Ulrich L, Vezzetti E. A metaverse platform for preserving and promoting intangible cultural heritage. *Applied Sciences*. 2024; 14(8):3426. <https://doi.org/10.3390/app14083426>
- Kamel MM, Gil-Solla A, Guerrero-Vásquez LF, Blanco-Fernández Y, Pazos-Arias JJ, López-Nores M. A crowdsourcing recommendation model for image annotations in cultural heritage platforms. *Applied Sciences*. 2023; 13(19):10623. <https://doi.org/10.3390/app131910623>
- Luo L, Liu J, Cigna F, Evans D, Hernandez M, Tapete D, Chen M. Space technology: A powerful tool for safeguarding world heritage. *Innovation*. 2023; 4(3):100420. <https://doi.org/10.1016/j.innn.2023.100420>

9. Neglia G, Angrisano M, Mecca I, Fabbrocino F. Cultural heritage at risk in world conflicts: Digital tools' contribution to its preservation. *Heritage*. 2024; 7(11):6343-6365.
<https://doi.org/10.3390/heritage7110297>
10. Nguyen CD. Digital cultural heritage in the crossfire of conflict: Cyber threats and cybersecurity perspectives, 2024. *Insights*, 37. <https://doi.org/10.1629/uksg.647>
11. Stublić H, Bilogrivić M, Zlodi G. Blockchain and NFTs in the cultural heritage domain: A review of current research topics. *Heritage*. 2023; 6(4):3801-3819.
<https://doi.org/10.3390/heritage6040202>
12. Trček D. Cultural heritage preservation by using blockchain technologies. *Heritage Science*. 2022; 10:6.
<https://doi.org/10.1186/s40494-021-00643-9>