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Abstract 
Shock wave propagation is a complex phenomenon that arises in various fields, including 
aerospace engineering, material science, medical research. This study presents a numerical 
investigation of shock wave propagation using high-order finite difference methods. The 
Euler equations are discretizied using higher order finite difference scheme & a time 
integration is performed using a Runge-kutta method. The numerical method is validated 
through comparisons with exact solutions and experimental data, demonstrating its accuracy 
& robustness. A parametric study is conducted to examine the effects of grid resolution, time 
step size, & numerical dissipation on the simulation results. The methodology is applied to 
simulate complex shock wave phenomena, including reflection, diffraction, & boundary 
interactions. 
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Introduction 
The propagation of shock waves is a complex phenomenon 
that has far-reaching implications across various disciplines, 
including aerospace engineering, material science & medical 
research. Characterized by abrupt changes in pressure, 
temperature, and density, shockwaves pose significant 
challenges to predictive modeling. The intricate dynamics of 
shockwaves propagation involve nonlinear interactions 
between fluid dynamics, boundaries & wave propagation. 
 Recent advances in computational fluid dynamics have 
highlighted the potential of high-order finite difference 
methods for simulating shock wave propagation. By 
leveraging high-order spatial discretization and advanced time 
integration techniques, researchers can capture the subtle 
nuances of shock wave behavior with enhanced accuracy. 
This numerical investigation seeks to contribute to the 
existing body of knowledge on shock wave propagation by 
exploring the efficacy of high-order finite difference methods. 
A systematic analysis of numerical parameters, boundary 
conditions, fluid dynamics will provide valuable insights into 
the predictive capabilities of these methods. 

 
Numerical Methods 
This section describes the numerical methods employed to 
simulate shock wave propagation. 
1. Finite Difference Methods: Finite difference methods 

are numerical techniques for solving differential 
equations by approximating derivatives with finite 
difference. They discretized the spatial and temporal 
derivatives using finite differences. 

2. High-Order Accuracy: High-order accuracy refers to 
achieving high accuracy in numerical simulation by using 
high-order finite difference schemes. This involves using 
more points to approximate derivatives, resulting in more 
accurate solutions. 

3. Shock Wave Propagation: Shock wave propagation 
studies the behavior of shock waves as they propagate 
through a medium. Shock waves are discontinuities in the 
solution that require specialized numerical methods. 

4. Weighed Essentially Non-Oscillatory (WENO) 
Scheme: WENO schemes are numerical methods for 
capturing shock waves and preventing oscillations. They 
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adaptively apply different numerical stencils based on the 
smoothness of the solution. 

5. Spatial Discretization: Spatial discretization discretizes 
spatial derivatives in numerical simulation. The spatial 
derivatives are discretized using a higher order finite 
difference scheme. The scheme is 4th order accurate and 
utilizes a stencil of 5 points to approximate derivatives. 
The finite difference formulation is based on a central 
difference scheme for smooth regions and upwind-biased 
scheme for shock regions.  

6. Time Integration: Time integration is performed using 
4-stage Runge-kutta method, which is 4th –order accurate. 
Runge-Kutta time integration solves ordinary differential 
equations using a multi-stage approach. This provides 
high-order accuracy & stability. The time step size is 
adaptive with a Courant-Friedrichs-Lewy (CFL) number 
between 0.5 & 0.9. The CFL number determines the 
stability of numerical simulations. The CFL number is 
calculated based on the local flow conditions and the grid 
spacing. It relates the time step size to the spatial grid 
spacing & wave propagation speed. 

7. Characteristic-Based Boundary Conditions: 
Characteristic-based boundary conditions are applied to 
capture wave reflections & transmissions. A buffer Zone 
is used to dampen spurious reflections. The buffer zone is 
implemented using a radiation boundary condition, which 
absorbs outgoing waves. This ensure that the numerical 
solution accurately captures physical phenomena. 

8. Shock Capturing: A weighted essentially non-
oscillatory (WENO) scheme is employed to capture 
shock waves and prevent oscillations. The WENO 
scheme uses a smoothness indicator to detect shock 
regions and adaptively applies a non-oscillatory central 
difference scheme or an upwind-biased scheme. Artificial 
viscosity is added to stabilized the solution & prevent 
oscillations.  

9. Grid Adaption: The grid adaptively refined near shock 
wave regions to optimize grid distribution. The grid 
adaptation algorithm uses a sensor-based approach to 
detect shock regions and refine the grid accordingly. This 
ensures that computational resources are focused on 
regions with high solution activity. 

10. Numerical Parameters: The numerical parameters used 
in this study are: 
• Grid resolution: 100-500 points 
• Time step size: Adaptive (CFL = 0.5-0.9) 
• Courant number: 0.5-0.9 
• WENO scheme parameters: 

 Smoothness indicator coefficient: 0.1 
 Non-oscillatory central difference scheme 

coefficient: 0.5 
 Upwind-biased scheme coefficient: 0.9 
 Artificial viscosity coefficient: 0.01 

Conclusion 
This numerical investigation demonstrated the efficacy of 
high-order finite difference methods in simulating shock wave 
propagation. By employing adaptive grid refinement, 
weighted essentially non-oscillatory (WENO) schemes, & 
characteristic-based boundary conditions, accurate & efficient 
solution were achieved. The results showed significant 
improvements in capturing shock waves and preventing 
oscillations highlighting the potential of these methods foe 
simulating complex hyperbolic problems. Future research 
directions include extending these methods to 
multidimensional problems exploring alternatives numerical 
approaches. This study’s innovative application of high-order 
finite difference methods to shock waves propagation 
showcases their potential for accurately capturing complex 
phenomena, By leveraging adaptive grid refinement and 
WENO schemes, this research advances the state-of-the-art in 
numerical simulations, paving the way for breakthroughs in 
field like aerospace engineering & fluid dynamics.  
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