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Abstract

Shock wave propagation is a complex phenomenon that arises in various fields, including
aerospace engineering, material science, medical research. This study presents a numerical
investigation of shock wave propagation using high-order finite difference methods. The
Euler equations are discretizied using higher order finite difference scheme & a time
integration is performed using a Runge-kutta method. The numerical method is validated
through comparisons with exact solutions and experimental data, demonstrating its accuracy
& robustness. A parametric study is conducted to examine the effects of grid resolution, time
step size, & numerical dissipation on the simulation results. The methodology is applied to
simulate complex shock wave phenomena, including reflection, diffraction, & boundary

interactions.
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Introduction

The propagation of shock waves is a complex phenomenon
that has far-reaching implications across various disciplines,
including aerospace engineering, material science & medical
research. Characterized by abrupt changes in pressure,
temperature, and density, shockwaves pose significant
challenges to predictive modeling. The intricate dynamics of
shockwaves propagation involve nonlinear interactions
between fluid dynamics, boundaries & wave propagation.
Recent advances in computational fluid dynamics have
highlighted the potential of high-order finite difference
methods for simulating shock wave propagation. By
leveraging high-order spatial discretization and advanced time
integration techniques, researchers can capture the subtle
nuances of shock wave behavior with enhanced accuracy.
This numerical investigation seeks to contribute to the
existing body of knowledge on shock wave propagation by
exploring the efficacy of high-order finite difference methods.
A systematic analysis of numerical parameters, boundary
conditions, fluid dynamics will provide valuable insights into
the predictive capabilities of these methods.
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Numerical Methods

This section describes the numerical methods employed to

simulate shock wave propagation.

1. Finite Difference Methods: Finite difference methods
are numerical techniques for solving differential
equations by approximating derivatives with finite
difference. They discretized the spatial and temporal
derivatives using finite differences.

2. High-Order Accuracy: High-order accuracy refers to
achieving high accuracy in numerical simulation by using
high-order finite difference schemes. This involves using
more points to approximate derivatives, resulting in more
accurate solutions.

3. Shock Wave Propagation: Shock wave propagation
studies the behavior of shock waves as they propagate
through a medium. Shock waves are discontinuities in the
solution that require specialized numerical methods.

4. Weighed Essentially Non-Oscillatory (WENO)
Scheme: WENO schemes are numerical methods for
capturing shock waves and preventing oscillations. They



International Journal of Advance Studies and Growth Evaluation

adaptively apply different numerical stencils based on the
smoothness of the solution.

5. Spatial Discretization: Spatial discretization discretizes
spatial derivatives in numerical simulation. The spatial
derivatives are discretized using a higher order finite
difference scheme. The scheme is 4™ order accurate and
utilizes a stencil of 5 points to approximate derivatives.
The finite difference formulation is based on a central
difference scheme for smooth regions and upwind-biased
scheme for shock regions.

6. Time Integration: Time integration is performed using
4-stage Runge-kutta method, which is 4" —order accurate.
Runge-Kutta time integration solves ordinary differential
equations using a multi-stage approach. This provides
high-order accuracy & stability. The time step size is
adaptive with a Courant-Friedrichs-Lewy (CFL) number
between 0.5 & 0.9. The CFL number determines the
stability of numerical simulations. The CFL number is
calculated based on the local flow conditions and the grid
spacing. It relates the time step size to the spatial grid
spacing & wave propagation speed.

7. Characteristic-Based Boundary Conditions:
Characteristic-based boundary conditions are applied to
capture wave reflections & transmissions. A buffer Zone
is used to dampen spurious reflections. The buffer zone is
implemented using a radiation boundary condition, which
absorbs outgoing waves. This ensure that the numerical
solution accurately captures physical phenomena.

8. Shock Capturing: A weighted essentially non-
oscillatory (WENO) scheme is employed to capture
shock waves and prevent oscillations. The WENO
scheme uses a smoothness indicator to detect shock
regions and adaptively applies a non-oscillatory central
difference scheme or an upwind-biased scheme. Artificial
viscosity is added to stabilized the solution & prevent
oscillations.

9. Grid Adaption: The grid adaptively refined near shock
wave regions to optimize grid distribution. The grid
adaptation algorithm uses a sensor-based approach to
detect shock regions and refine the grid accordingly. This
ensures that computational resources are focused on
regions with high solution activity.

Numerical Parameters: The numerical parameters used

in this study are:

e  Grid resolution: 100-500 points

e Time step size: Adaptive (CFL =0.5-0.9)

e  Courant number: 0.5-0.9

e  WENO scheme parameters:
=  Smoothness indicator coefficient: 0.1
= Non-oscillatory central difference

coefficient: 0.5
=  Upwind-biased scheme coefficient: 0.9
= Artificial viscosity coefficient: 0.01

10.

scheme
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Conclusion

This numerical investigation demonstrated the efficacy of
high-order finite difference methods in simulating shock wave
propagation. By employing adaptive grid refinement,
weighted essentially non-oscillatory (WENO) schemes, &
characteristic-based boundary conditions, accurate & efficient
solution were achieved. The results showed significant
improvements in capturing shock waves and preventing
oscillations highlighting the potential of these methods foe
simulating complex hyperbolic problems. Future research
directions  include extending these methods to
multidimensional problems exploring alternatives numerical
approaches. This study’s innovative application of high-order
finite difference methods to shock waves propagation
showcases their potential for accurately capturing complex
phenomena, By leveraging adaptive grid refinement and
WENO schemes, this research advances the state-of-the-art in
numerical simulations, paving the way for breakthroughs in
field like aerospace engineering & fluid dynamics.
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