

Harvesting Renewable Energy from Waste: An Innovative Approach to Electricity Generation-A Review

*¹ Yogesh K Kirange, ²Harshal N Patil, ³Prerna H Sonawane, ⁴Kalyani K Patil and ⁵Vaishnavi S Pawar

*¹ Assistant Professor, Department of Electrical Engineering, R.C. Patel Institute of Technology, Shirpur, Dhule, Maharashtra, India.

^{2,3,4,5} Student, Department of Electrical Engineering, R.C. Patel Institute of Technology, Shirpur, Dhule, Maharashtra, India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 5.231

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 19/April/2024

Accepted: 30/May/2024

Abstract

In the pursuit of sustainable energy solutions amid escalating energy demands, this research explores the transformation of waste materials, such as organic waste, biomass, and landfill gas, into a valuable source of renewable energy. The core objective is to devise a pragmatic and sustainable approach, mitigating environmental repercussions tied to waste disposal, broadening the energy portfolio to reduce dependence on fossil fuels, and engineering a cost-efficient electricity generation system. The proposed methodology involves waste selection, exploration of conversion technologies, system integration, performance evaluation, environmental impact assessment, and economic viability assessment. Findings aim to furnish quantitative data on electricity generation, technology efficiency metrics, environmental benefits, and economic feasibility for scaling up. This research envisions a sustainable and eco-friendly energy landscape through the effective utilization of waste materials, thereby contributing to a resilient energy future. Future perspectives include commercial scaling, exploration of grid integration and energy storage, diversification of viable waste materials, policy implementation for waste-to-energy technologies, and investigation of community-based solutions.

*Corresponding Author

Yogesh K Kirange

Assistant Professor, Department of Electrical Engineering, R.C. Patel Institute of Technology, Shirpur, Dhule, Maharashtra, India.

Keywords: Environmental Impact Assessment, Renewable Energy from Waste, Sustainable Electricity Generation, Thermoelectric Power Generation, Waste-to-Energy.

1. Introduction

Approximately 1.3 billion individuals worldwide live without access to electricity, with a staggering quarter of this population, amounting to 300 million people, residing in India. The profound impact of this energy deficit is acutely felt in rural and isolated regions, where conventional means of electricity transmission and distribution are often impractical, resulting in a prolonged deprivation of this essential resource. Particularly in remote areas nestled within forests and mountains, the absence of a reliable electricity infrastructure necessitates the exploration of independent energy sources. The innovation presented in this study leverages Peltier modules to convert thermal energy into electrical power, offering a sustainable solution for regions abundant in thermal resources. The ubiquity of thermal energy sources in these areas ensures an environmentally benign approach. The device, driven by Peltier modules, has the potential to supply power for various applications, including lighting, through the

conversion of generated voltages using converters such as choppers and inverters. Despite persistent efforts, electricity remains elusive in many remote corners of the world, prompting endeavors to establish autonomous power systems employing renewable and unconventional energy generation techniques.

This paper focuses on the application of thermo-electric technology as a non-conventional alternative for electricity generation, specifically suited for standalone power supply system's catering to micro loads. The proposed solution introduces a standby approach for delivering electricity to lighting loads in remote areas, utilizing Peltier-based thermoelectric generators. These generators harness heat from a solar water heater to generate DC voltage, subsequently converted to AC through a simple single-phase inverter to power lamp loads. Power generation stands as a pivotal element in contemporary society, necessitating the exploration of alternative and sustainable avenues due to the

escalating demand for energy. A particularly promising trajectory in this pursuit is the harnessing of waste materials for electricity generation. Materials like organic waste, biomass, and landfill gas emerge as valuable resources, offering a pathway to sustainable energy production. This approach not only addresses the pressing issues of waste management but also aligns with the imperative for environmental sustainability in the face of burgeoning energy needs.

The primary objective of this investigation is to delve into and formulate a pragmatic and sustainable approach for electricity generation through the utilization of waste materials. This research endeavors to transform waste materials into a significant reservoir of renewable energy, to mitigate the environmental repercussions associated with waste disposal, to contribute to broadening the spectrum of the energy portfolio, thereby diminishing reliance on fossil fuels and an engineer a cost-efficient and highly effective electricity generation system.

The Globe Confronts Numerous Formidable Challenges in the Realms of Energy and Waste Management

- a) Diminishing reserves of fossil fuels and their substantial role in climate change.
- b) Insufficient waste disposal practices, resulting in land pollution and the squandering of resources.
- c) Apprehensions about energy security stemming from an overreliance on non-renewable energy sources.
- d) Economic limitations and environmental regulations advocating for the adoption of sustainable energy solutions.

The Prospective Trajectory of this Research Encompasses

- a) Scaling the electricity generation system for commercial deployment.
- b) Exploring the feasibility of grid integration and energy storage solutions.
- c) Diversifying the array of waste materials viable for efficient electricity generation.
- d) Instituting policies and incentives to foster the uptake of waste-to-energy technologies.
- e) Investigating the potential for community-based or decentralized waste-to-energy solutions. By delving into these facets, this research has the potential to lay the groundwork for sustainable, eco-friendly electricity generation using waste materials, thereby contributing to a more robust and sustainable energy landscape.

Findings: This study endeavors to produce concrete outcomes, including

- a) Quantitative data detailing electricity generation from waste materials.
- b) Efficiency and performance metrics of the selected technology.
- c) Examination of environmental advantages, encompassing reduced emissions and waste reduction.
- d) Economic analysis aimed at determining the feasibility of scaling up this technology for broader implementation.

2. Literature Review

This study presents thermoelectric effect power generation technology. A medium-temperature waste heat recovery prototype is used in the heat collection, cooling, and power generation components. The 60 thermoelectric chips tested yield 60W at 109.4 °C, 1.05A, and 56.4V. The device is suited for industrial applications since each element may be

controlled separately [1]. Indonesia's massive urban solid waste generation threatens the environment, public health, and economic progress. This study evaluates anaerobic digestion and incineration as waste-to-energy (WTE) systems. From 2020 to 2050, their MSW-to-energy potential is assessed. When choosing a power-generating method, consider techno-economic and environmental considerations. Long-term, anaerobic digestion with SOFC power generation technology offers technical, economic, and ecological advantages, while short-term options include incineration and gas turbine technology with low LCOE and CO₂ emission intensity [2]. India supplies electricity to almost 17% of the world's population with 3.4% of its energy. Thermal power plants provide 65.34 percent of energy. Hydropower is 21.53%, nuclear is 2.70%, and sustainable is 10.42%. India is investing increasingly in renewable energy sources due to economic, ecological, and social concerns, even though it still derives more than half its energy from coal. Rural areas lack electricity. Solid waste management is crucial since burning and dumping it harms persons and the environment. This study seeks efficient solid waste management and electricity production from food and kitchen leftovers [3]. Inadequate waste management infrastructure in developing economies drives global municipal solid waste growth. This research distinguishes waste-to-energy techniques by their usage of thermal, biological, biorefinery, or landfill gas. The invention integrates waste-to-energy technology with a whole waste management system to refill energy. Waste-to-Energy (WTE) and Integrated Solid Waste Management with Sustainable (ISWM-S) technologies convert municipal solid waste into renewable energy for a better future [4]. Optimizing energy purchases and balancing power production helps support local development and electricity supply. State Grid Heilongjiang Electric Power Co., LTD. is used to develop a power purchase expense model to assess cost-cutting options. Power purchases vs demand are the most essential criteria in selecting the ideal energy pricing structure. Regulations impact expenses. Heilongjiang power generation prediction models utilize authentic data. Energy purchasers can evaluate how local power capacity influences electricity purchasing [5]. Challenges in both industrialized and developing nations demand engineering solutions for municipal solid waste (MSW) management. Waste to Energy (WtE) technology is analyzed for its potential to transform MSW into a solution for energy security. The study evaluates the thermodynamic performance of a hybrid combined cycle (HCC) plant, showcasing the feasibility of repowering MSW incineration for electricity generation [6]. The Philippines faces challenges in solid waste management amid economic growth and electricity shortages. A small-scale incinerator, utilizing Waste-to-Energy (WTE), is proposed to manage solid waste and provide micro-electricity to rural areas. The prototype emphasizes eco-friendly waste processing and demonstrates the potential to generate electricity for multiple households [7]. Despite favorable conditions, the utilization of landfill gas for electricity generation in Ukraine remains limited. An analysis of the feed-in tariff as an economic tool indicates economic viability, but non-price barriers hinder sector growth [8]. Wireless Sensor Network (WSN) solutions are proposed for an energy-efficient urban waste management system. The model, with three layers and sensor nodes, minimizes energy consumption, operational costs, and enhances environmental quality [9]. A circular economy perspective is applied to food waste management, focusing on waste generated in food court areas. Thermochemical conversion processes are explored,

positioning Food Court Waste as a viable source of green energy [10].

A fair risk-sharing mechanism is crucial for Waste-to-Energy incineration projects. An intelligent optimization algorithm, incorporating altruistic preferences, quantitatively studies risk allocation in Public-Private Partnership projects [11]. Emerging economies leverage machine learning algorithms for electricity production from food wastes. An Artificial Neural Network (ANN) model proves effective, offering insights into monitoring waste-to-energy processes [12]. Non-biodegradable waste, like plastics and tins, is burned in a WtE plant to generate electricity via a heating panel. This innovative approach aids in waste management and reduces reliance on traditional energy sources [13]. Bangladesh explores Waste to Electrical Energy (WTEE) as an environmentally friendly and cost-efficient alternative for electricity generation. The proposed concept utilizes the latent energy in Municipal Solid Waste (MSW) to meet power requirements [14]. A model focuses on converting decomposed food waste into electricity using Microbial Fuel Cells (MFC). The MFC's efficiency is tied to Biological Oxygen Demand (BOD) and organic matter, offering a sustainable solution with zero waste [15]. A non-conventional method uses piezoelectric tiles to harness waste energy during walking for electricity generation. This approach addresses electricity shortages and reduces the environmental impact of traditional power generation [16].

To Realize the Set Objective, the following Methodology will be implemented

a) Waste Selection and Collection: Identify and gather

suitable waste materials, considering factors such as energy content, availability, and environmental impact.

- b) Waste Conversion: Explore various conversion technologies, encompassing anaerobic digestion, pyrolysis, gasification, and microbial fuel cells, to transform waste materials into electricity.
- c) System Integration: Develop and assemble an integrated system that maximizes the efficiency of the electricity generation process.
- d) Performance Evaluation: Execute tests and experiments to gauge the effectiveness and reliability of the system.
- e) Environmental Impact Assessment: Scrutinize the environmental advantages, such as diminished greenhouse gas emissions and waste reduction.
- f) Economic Viability: Assess the cost-effectiveness of the electricity generation system.

3. Proposed Scheme

Figure 1 describes the pictorial representation of the waste-to-energy setup with three stages. In Figure 1, this research work establish a configuration utilizing a metallic firebox, denoted as the "Firefox," for the incineration of waste materials. As the waste undergoes combustion, a Light Dependent Resistor (LDR) module detects the resultant heat and transmits a signal to an Arduino microcontroller. The Arduino, subsequently, activates a relay module, initiating the utilization of the generated electricity to power a DC bulb, functioning as the primary load, marking the initial phase of the schematic.

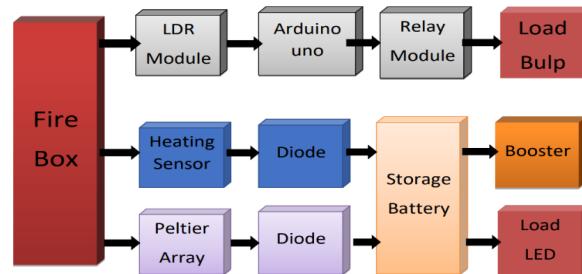
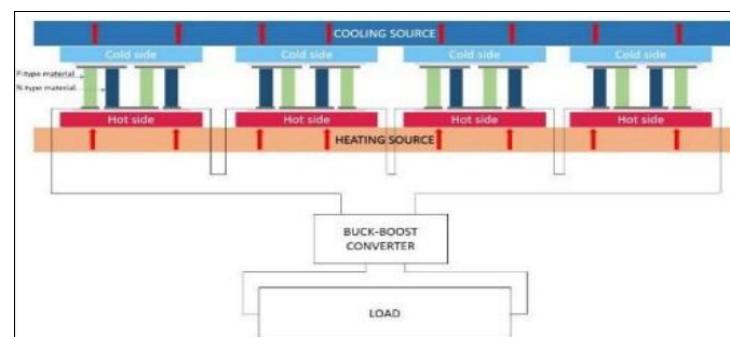
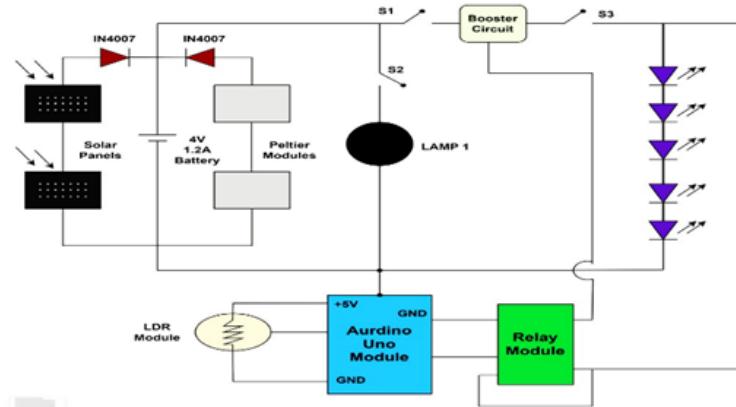


Fig 1: Pictorial representation of the waste-to-energy setup with three stages

In the subsequent phase, a heating sensor identifies the heat produced during waste incineration within the firebox. This sensor translates the thermal energy into electricity, directing it to the subsequent component equipped with a diode to avert reverse current flow. The resultant electricity is then stored in a battery for future application during periods of power demand. Should an elevated voltage be requisite, a booster is employed to amplify the voltage, extracting the primary voltage from the battery storage and delivering increased voltage at the secondary end.

The third and final stage involves Peltier modules, devices adept at sensing heat on one side and inducing cooling on the opposite side. These modules primarily function to convert the temperature disparity into electricity. The energy generated by these modules is transferred back to the battery storage for future utilization, with an interposing diode preventing reverse current flow. Ultimately, this harnessed electricity serves to illuminate DC LEDs connected at the culmination of the configuration.




Fig 2: Construction of peltier module connected in series

In Figure 2, when Peltier modules are connected in series, their operation involves a sequential arrangement in which the electrical current passes through each module in succession. The Peltier effect, based on the Seebeck effect, allows these modules to generate a temperature difference between their hot and cold sides when an electric current flows through them. In a series configuration, the positive (hot) side of one module is connected to the negative (cold) side of the next module, forming a continuous chain.

The operation begins with an electrical current supplied to the

first Peltier module. As the current flows through the module, it causes one side to absorb heat (the cold side), while the other side releases heat (the hot side). This temperature differential is a result of the Peltier effect, and it is crucial for the module's thermoelectric functionality.

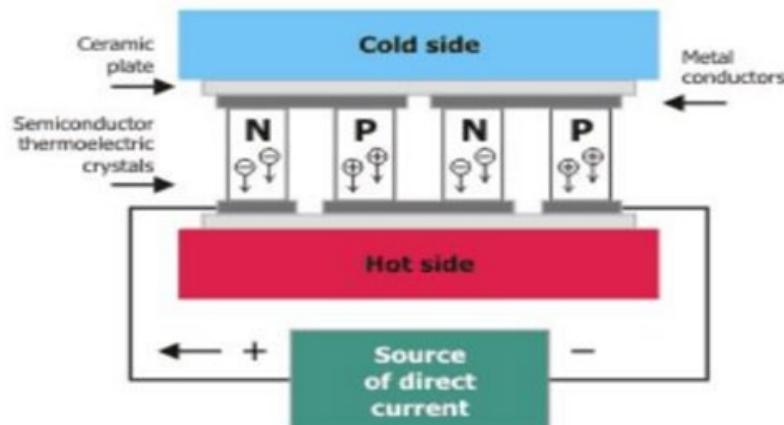

The subsequent module in the series receives the already cooled side (negative or cold side) of the previous module as its own cold side, and the process repeats. This cascading effect continues along the series configuration, with each module contributing to the overall temperature gradient.

Fig 3: Peltier Module Connected in Series

The circuit integrates a fire sensor, Arduino Uno, relay module, Peltier modules, switches, diodes, storage battery, LED, and a lamp load for a versatile and energy-efficient operation. The fire sensor detects flames or high temperatures, signaling the Arduino Uno to activate the Peltier modules, generating electricity from the temperature difference. This harvested energy charges the storage battery. The relay module, controlled by the Arduino Uno, manages the lamp

load, allowing it to be manually turned on or off by user switches or automatically based on the fire sensor's input. Diodes ensure proper current flow, and an LED serves as a visual indicator for system status. This comprehensive design ensures intelligent control of the lamp load, thermoelectric energy harvesting, and user-defined operation, providing a robust and adaptable circuit for various applications.

Fig 4: Peltier Module Connected in Series

In operation, when a direct current is applied to the circuit, the semiconductor thermoelectric crystals, typically made of materials like bismuth telluride, exhibit the Seebeck effect. This effect generates a temperature difference between the two sides of the thermoelectric module: the hot side and the cold side. The hot side is usually in contact with a heat source, while the cold side is exposed to a cooler environment or attached to a heat sink.

As a consequence of the temperature gradient across the thermoelectric module, an electrical voltage is induced. Metal conductors within the circuit allow this voltage to create a flow of electrical current. The generated electrical power can then be utilized for various applications.

Finally, the operation of this circuit harnesses the thermoelectric properties of semiconductor crystals to convert a temperature gradient, created by a heat source and a heat sink, into electrical power through the Seebeck effect. This process demonstrates the fundamental principle of thermoelectric power generation, converting heat directly into usable electrical energy.

4. Results and Discussion

The Waste-to-Energy (WTE) process is a robust and sustainable method for generating renewable fuel, thereby mitigating the dependency on conventional fossil fuels and concurrently curtailing greenhouse gas emissions. The

combustion of fuels, inherent to this process, is pivotal for energy production but also results in the release of harmful gases, notably greenhouse gases. Commonly denominated as waste-to-energy, this sophisticated process yields multifaceted advantages. It contributes to landfill waste reduction, strategically addresses the challenge of diminishing greenhouse gas emissions, and concurrently serves as a valuable source of renewable energy. The integration of WTE into waste management strategies showcases its pivotal role in fostering environmental sustainability while meeting energy demands.

Conclusion

In conclusion, this research signifies a significant stride towards sustainable energy practices by exploring the conversion of diverse waste materials into a potent source of renewable energy. Addressing the critical issues of waste management, environmental sustainability, and the growing global demand for energy, the study emphasizes the development of a practical and cost-efficient electricity generation system. The challenges posed by depleting fossil fuel reserves, inadequate waste disposal methods, and the urgency for transitioning to sustainable energy alternatives underscore the pressing need for innovative solutions.

The proposed methodology, encompassing waste selection, advanced conversion technologies, and comprehensive assessments, presents a structured approach to realizing the research objectives. The outlined future perspectives, including commercial scaling, grid integration, and community-based solutions, demonstrate the broader societal implications of the research findings. Through quantitative data on electricity generation, technology efficiency metrics, and economic viability, the study lays a foundation for the integration of waste-to-energy technologies into mainstream energy practices.

By contributing to a more diversified and eco-friendly energy portfolio, this research has the potential to shape a resilient and sustainable energy landscape. The findings offer valuable insights for policymakers, researchers, and industries alike, promoting the adoption of waste-to-energy technologies and fostering a transition towards a more sustainable and environmentally conscious future.

References

1. Jair SK, Hsieh MC, Chang IW, Hou SS. "Development of a waste heat recovery power generation system," 9th International Conference on Applied System Innovation (ICASI), Chiba, Japan, 2023, 202-204.
Doi: 10.1109/ICASI57738.2023.10179529.
2. Octavianthy D, Purwanto WW. "Municipal Solid Waste to Electricity Using Anaerobic Digestion and Incineration Conversion Technologies: A Comparative Study," IEEE International Conference on Innovative Research and Development (ICIRD), Jakarta, Indonesia, 2019, 1-6.
Doi: 10.1109/ICIRD47319.2019.9074751.
3. Muneeswaran V, Nagaraj P, Reddy BAK, Vardhan MY, Reddy TNK, Sanjay R. "Power Generation Using Waste Management System," 2nd International Conference on Edge Computing and Applications (ICECAA), Namakkal, India, 2023, 1468-1471.
Doi: 10.1109/ICECAA58104.2023.10212117.
4. Alwiyah Padeli M, Yusuf H, Kusumah Suwandi. "Integration of Renewable Energy Technology in Waste Recycling Utilization," IEEE Creative Communication and Innovative Technology (ICCIT), Tangerang, Indonesia, 2022, 1-7.
5. Hua K, Cao R, Zhan X, Liu G. "Electricity purchasing cost and power generation prediction," 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2022, 818-821.
Doi: 10.1109/IMCEC55388.2022.10019895.
6. Castillo N, Tarazona B, Ascanio J, Sandoval C, Rincon D. "Exergetic evaluation of hybrid combined cycle (HCC) of direct waste incineration (MSWI) with electricity generation," 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 2023, 1-6.
Doi: 10.1109/ICECCME57830.2023.10252686.
7. Andress RD. *et al.*, "Waste-to-Energy Smale Scale Incinerator Designed With Air Filters For Municipal Rural Area," IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 2021, 1-6.
doi: 10.1109/HNICEM54116.2021.9731893.
8. Kurbatova T, Perederii T, Hyrcenko Y. "Assessment of electricity generation cost from landfill gas," IEEE 7th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 2020, 230-233.
Doi: 10.1109/ESS50319.2020.9160211.
9. Zafor H, Mazumdar N, Nag A. "An energy efficient waste collection, segregation, and processing of Municipal Solid Waste in urban area using WSN," IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 2022, 1-6.
Doi: 10.1109/UPCON56432.2022.9986468.
10. Bulmau C, Ionescu G, Tirtea RN, Marculescu C, Boldor D. "Energy Potential and Properties of Food Court Waste-FCW as Fuel Towards Circular Economy," International Conference on Energy and Environment (CIEM), Timisoara, Romania, 2019, 529-533.
Doi: 10.1109/CIEM46456.2019.8937563.
11. Huang Y, Han W. "PSO-Based Risk Allocation in Waste-To-Energy Incineration Public-Private Partnership model," Power System and Green Energy Conference (PSGEC), Shanghai, China, 2021, 502-506.
Doi: 10.1109/PSGEC51302.2021.9542605.
12. Ighravwe DE, Mashao D. "Neural Network Based Estimation of Electricity Generated During a Waste-to-energy Process: Estimation of Generated Electricity," 6th International Conference on Soft Computing & Machine Intelligence (ISCFMI), Johannesburg, South Africa, 2019, 56-60.
Doi: 10.1109/ISCFMI47871.2019.9004303.
13. Santhosh Kumar R, GTR, DP, APS. "Generating Electricity by Non-Biodegradable Waste," International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarakhand, India, 2023, 905-911.
Doi: 10.1109/ICIDCA56705.2023.10099978.
14. Hasan MS, Hossain MS, Hayder MR. "Converting Municipal Solid Waste into Electrical Energy: A Renewable Solution in Bangladesh," International Conference on Electrical, Computer and Communication Engineering (ECCE), Chittagong, Bangladesh, 2023, 1-5.
Doi: 10.1109/ECCE57851.2023.10101566.

15. Premkumar R, Vijayaraja L, Dhanasekar R, Kesavan R, Sreevaragi S, Swetha M. "Energy Generation from Bio-Waste using Normal and Chemical Decomposition Technique to Meet Power Demand in Urban Areas," 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2022, 137-145,
Doi: 10.1109/ICESC54411.2022.9885310.
16. Sarala T, Shivashankar M, Poornima, Lekhana HD. "Generation And Utilization of Electricity Using Footsteps As A Source of Energy," International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 2020, 378-382.
Doi: 10.1109/RTEICT49044.2020.9315633.