

Connection and Convariant Differentiations in f_n and Curvature Tensors in F_n

*¹ Dr. Pundreek Verma

*¹ Assistant Professor, Department of Applied Science and Humanities (APSH), Rajkiya Engineering College Gonda, Utraula Road, Gonda, Uttar Pradesh India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 6.876

Peer Reviewed Journal

Available online:

www.alladvancejournal.com

Received: 22/Sep/2024

Accepted: 23/Oct/2024

Abstract

Takano, K^[5] has studied the existence of existence of affine motion in a non -Riemannian K^{*}-space has obtained several result of significance. He has also studied the existence of projective motion in a Riemannian space with bi-recurrent curvature. Pande, H.D. and Kumar. A^[3] have also discussed the special infinitesimal projective transformation in a Finsler space and have obtained certain theorms therien . In the present communication we have also derived the complete of a affine motion in a R+ - recurrent Finsler space. We have also derived the complete condition for the vanishing of $\mathfrak{L}_v R jkh$ is the curvature tensor type entity with respect to the non- symmetric connection as has been introduced by Gupta ^[2].

*Corresponding Author

Dr. Pundreek Verma

Assistant Professor, Department of

Applied Science and Humanities

(APSH), Rajkiya Engineering College

Gonda, Utraula Road, Gonda,

Uttar Pradesh India.

Keywords: Transformation, Orthogonality, Hamiltonian Function, n Dimension, Positional Co-ordinate, Directional Co-ordinate, Minkowskin Space.

1. Introduction

Consider a region R of an n -dimension space X_n which is completely covered by a coordinate system, such that each point P in R is represented by n -tuples $x^1, x^2, x^3, \dots, x^n$ or x^i ($i = 1, 2, 3, \dots, n$) of real number, Which will be called coordinates are function of a single parameter 't' (say). Thus, the parametric equations

$$(1.1) \quad x^i = x^i(t) \text{ represent a curve } C \text{ of } X_n$$

Let us assume that this curve is of class C1. the entities (derivatives)

$$(1.2) \quad x_i = dx^i/dt$$

constitute the components of a vector tangential to the curve C at the point $P(x^i)$. The combination (x^i, x^i) which is conveniently written as (x, x') is known as line-element of the curve C with centre at P [28]. In the line element (x, x') x

and x' are called positionl and directionl coordinates respectively.

Let $P(x)$ and $Q(x + dx)$ be two neigbouring points of the region R then the infinitesimal distance ds between these two points P and Q is defined by

$$(1.3) \quad ds = F(x, dx)$$

where

$F(x, x')$ is a function defined for all line - elements (x, x') in the region R .

Defenition (1.1)

An η - dimensional space X_n equipped with a function $F(x, x')$ as defined above, denoted by F_n , is called a Finsler space if the function F statisfies the following three conditions [28]:

Condition-A

The function $F(x, x')$ is positively homogrneous of degree one in X^i , i.e. where k is some positive scalar.

Condition-B

The function $F(x, x')$ is positive unless all x' 's vanish simultaneously, i.e. (1.5) $F(x, x') > 0$ with $\sum_i (x_i')^2 \neq 0$.

Condition-C

The quadratic form

(1.16) $\{\partial_i, \partial_j F^2(x, x')\}$ (i, j where $\partial_i = \partial/ \partial x^i$) is positive definite for all the variables (i)

The function $F(x, x')$ is called as the fundamental function or the metric function of the Finsler space F_n .

2. Metric Tensor

Let us consider a set of quantities g_{ij} which are defined by

$$(2.1) g_{ij}(x, x') = \frac{1}{2} \partial_i \partial_j F^2(x, x')$$

The quantities g_{ij} constitute the components of a covariant tensor of type (0,2). This tensor is called metric tensor of the Finsler space F_n . From (2.1) it is obvious that the metric tensor $g_{ij}(x, x')$ are positively homogeneous of degree zero in x^i and symmetric in i and j . In view of Euler's theorem on homogeneous function, we have

$$(2.2) \begin{aligned} (a) \quad & x^i \partial_i F(x, x') = F(x, x'), \\ (b) \quad & x^i \partial_i \partial_j F(x^i, x'^i) = 0 \\ (c) \quad & \det \{ \partial_i \partial_j F(x^i, x'^j) \} = 0 \text{ and} \\ (d) \quad & g_{ij}(x, x') x^i x^j = F^2(x, x') = 0 \end{aligned}$$

In view of (2.2d), we may express the infinitesimal distance ds between two neighboring points x and $x + dx$ in terms of metric tensor as

$$(2.3) ds^2 = g_{ij}(x, dx) dx^i dx^j$$

3. Tangent Space, Minkowskian Space, Indicatrix and its Dual Space

Let us consider the change of local coordinates represented by

$$(3.1) \bar{x}^i = \bar{x}^i(x^j(t))$$

Then the components $x^i = /dt$ of the tangent vector to the curve (1.1) are transformed according to

$$(3.2) \bar{x}^i = (\partial_j \bar{x}^i) x^j \partial_j = \partial / \partial x^i$$

or in terms of differentials

$$(3.3) d\bar{x}^i = (\partial^i \bar{x}^i) dx^i$$

A system of n -quantities X^i whose transformation law under (3.1) is analogous to that of the x^i is called a contravariant vector attached to the point $P(x^i)$ of F_n . The individual X^i represents its components. Such contravariant vectors attached to the point $P(x^i)$ constitute the elements of a vector space and this vector space is said to be the tangent space attached to the point $P(x^i)$ and is represented by $T_n(P)$ or $T_n(x^i)$.

This may be defined in terms of differentials as well. The length of a vector n_i of a vector $\eta^i T_n(P)$ is given by $F(x^i, \eta^i)$. In view of (2.2d), all length in $T_n(P)$ may be expressed in terms of g_{ij} , defined by (2.1), which we shall regard as the components of the metric tensor of $T_n(P)$.

Definition (3.1)

A Finsler space F_n is called Minkowskian space if there exists a coordinate system in which the metric function F is independent of x^i ([28], p.50)

Definition (3.2)

The indicatrix of F_n at a Point x^i is defined by the equation $F(x, x) = 1$ (x^i is fixed) (16, 28, p. 12).

Definition (3.3)

A tensor T of F_n is called an indicatory ([17]) if its components $T_{ij...k}$ satisfy

$$(3.4) T_{oj...k} = T_{io...k} = \dots = 0,$$

Where 0 denoted the contraction with x^i

Corresponding to each arbitrary contravariant vector (x^i of $T_n(p)$), there is a covariant vector y^i , such that

$$(3.5) y^i = g_{ij}(x, x') x'^j$$

All such of vector associate with the point P of F_n , constitute a vector space function of the which is named as dual tangent space at P and is represented by

$\bar{T}_n(P)$ or $T'_n(P)$. The metric dual tangent space is the Hamiltonian function $H(x^i, x'^i)$ satisfying the three requisite conditions for being a Finsler space as have been stated in section 1.

Analogous to the metric tensor $g_{ij}(x, x') x'^j$, we define a tensor $g_{ij}(x^k, y_k)$ as

$$(3.6) g_{ij}(x^k, y_k) = \frac{1}{2} \partial_i \partial_j H^2(x^k, y_k)$$

Where ∂_i denotes the partial differentiation with respect to the covariant vector x'^j

These quantities $g_{ij}(x^k, y_k)$ constitute the components of a contravariant tensor of the type (2,0).

The quantities g_{ij} defined by (2.1) and (3.6) are related by

$$k = \{1 \text{ if } i = k\}$$

$$(3.6) g_{ij} g^{jk} = \delta$$

From here we find (3.7) (a) $g_{ij} g_{ij} = n$

0 otherwise

Transecting (2.1) by x'^j and using (3.5) we get

$$(3.8) y_i = g_{ij} x^j = \frac{1}{2} \partial_i F^2 = F \partial_i F$$

The vector x'^j also satisfies the relations

$$(3.8) y_i x'^j = F^2 \text{ and (b) } g_{ij} = \partial_i y_j = \partial_j y_i$$

4. (h) hv-Torsion Tensor and Generalised Christoffel Symbol

From the metric tensor we construct a new tensor C_{ijk} by differentiating (2.1) partially with respect x'^k . This new tensor C_{ijk} is defined as

$$(4.1) C_{ijk} = \frac{1}{2} \partial_k \cdot g_{ij} = \frac{1}{2} \partial_i \cdot \partial_j \cdot \partial_k F^2$$

This tensor is called the (h) hv-torsion tensor [18]. It is positively homogenous of degree-1 in x^j and is symmetric in all three of its indices. Because of its homogeneous properties this tensor satisfies the following identities.

(4.2) (a) $C_{ijk}x^i = C_{jki}x^i = C_{kij}x^i = 0$
 (b) $C_{ijk}x^i = C_{kji}x^i = 0$ and (b) $C_i y_i = 0$

The tensor C_{ijk} is the associate tensor of $C_{jk} y_i$ and is defined by

$$(4.3) C_{ijk} g^{hi} C_{ijk}$$

This tensor is also positively homogeneous of degree-1 in x^i and is symmetric in its lower indices.

Let us the generalized Christoffel symbols of first and second kind, as Riemannian geometry by

$$(4.4) (a) \gamma_{ijk} \frac{1}{2} (\partial_i g_{jk} + \partial_k g_{ij} - \partial_j g_{ki}) \text{ and } \gamma_{hik} g^{hi} \gamma_{ijk}$$

5. Magnitude of A Vector the Notion of Orthogonality

The metric tensor $g_{ij}(x, x')$ may be used in two different way, in defining the magnitude of a vector and also the angle between two vectors.

Definition (5.1)

Let V_i be a vector then the scalar $|V|$ given

$$(5.1) |V|^2 = g_{ij}(x, v) V^i V^j$$

References

1. Brickell F. On the Differentiability of projective and affine transformations Ibid. 1965; 16:84-112.
2. Group KK. Certain investigations in the differential geometry of Finsler spaces equipped with non-symmetric connection, Ph.D thesis, University of Gorakhpur, Gprakhpur, 1980.
3. Pande HD, Kumar A. Special infinitesimal projective transformation in a Finsler space, Acad Naz. dei Lincei Rend. Sev. VIII. 1973; 57:1173-1179.
4. Round H. The differential geometry of Finsler spaces, Springer Verlag, Berlin, 1959.
5. Takano K. On The existence of affine motion in a space with recurrent curvature, Tensor (NS). 1966; 1(17):68-73.
6. Walker AG. On Ruse's spaces of recurrent curvature, Ibid. 1951; 52(2):36-64.
7. Yano K. The theory of Lie-derivatives and its applications, North Holland Publ. CO. Amsterdam, 1957.