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Takano, KI°! has studied the existence of existence of affine motion in a non —Riemannian
K"-space has obtained several result of significance. He has also studied the existence of
projective motion in a Riemannian space with bi-recurrent curvature. Pande, H.D. and
Kumar. AP have also discussed the special infinitesimal projective transformation in a
Finsler space and have obtained certain theorms therien . In the present communication we
have also derived the complete of a affine motion in a R+ - recurrent Finsler space. We have

also derived the complete condition for the vanishing of £v R jkh is the curvature tensor type
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1. Introduction

Consider a region R of an n-dimension space X» which is
completely covered by a coordinate system, such that each
point P in R in represented by n-tuples x!, x%, x3, X" or
xt (i=1,2,3 ... ..n) of real number, Which will be called
coordinates are function of a single parameter ‘t’ (say). Thus,
the parametric equations

(1.1)

xt= xt(t) represent a curve C of Xn

Let us assume that this curve is of class Cl. the entities
(derivatives)

(1.2) xi=dxt/dt

constitute the components of a vector tangential to the curve
C at the point P(x!). The combination (xi, x?) which is
conveniently weitten as (x, x) is known as line-element of
the curve C with centre at P[28]. In the line element (x, x) x
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and x° are called positionl and directionl coordinates
respectively.

Let P(x) and Q(x + dx) be two neigbouring points of the
region R then the infinitesimal distance ds between these two
points P and Q is defined by

(1.3) ds F(x, dx)

where
F (x, x7) is a function defined for all line - elements (x, x*) in
the region R.

Defenition (1.1)

An 71— dimensional space X» equipped with a function F(x,
x") as defined above, denoted by F,, is called a Finsler space
if the function F statisfies the following three conditions [28]:

Condition-A
The function F(x, x°) is positively homogrneous of degree
one in X', i.e. where k is some positive scalar.
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Condition-B
The function F(x, x’) is positive unless all x’'s vanis
simultaneously, i.e. (1.5) F(x, x)> 0 with Yi(xt")? #0.

Condition-C

The quadratic form

(1.16) {ar", 3j F? (x, x*)} (i, (j where dt" = @/ "t dx is positive
definite for all the variables (i

The function F(x, x") is called as the fundamental function or
the metric function of the Finsler space F,.

2. Metric Tensor
Let us consider a set of quantities g;; which are defined by

2.1) gij(x,x )10 0V F2 (x,x")
2

The quantities gj countitute the components of a covariant
tensor of type (0.2). This tensor is called metric tensor of the
Finsler space F,. From (2.1) it is obvious that the metric
tensor gi(x, x") are positively homogeneous of degree zero in
x't and symmetric in i and j. In view of Euler’s theorm on
homogeneous function, we have

(2.2) (a) x0r F(x,x")="F (x, x"),
(b) x99y F (xt, x')=0
(c) det. {3, 8y F (xi, x7" )} = 0 and
(d) gi(x, xH)x = F¥x, x) =0

In view of (2.2d), we may express the infinitesimal distance
ds between two neighboring points x and x + dx in tearms of
metric tensor as

(2.3) ds? = g (x, dx)dxi dx

3. Tangent Space, Minkowskian Space, Indicatrix and
its Dual Space
Let us consider the change of local coordinates represented by

G.)F =i (6 (t)

Then the components x i'=/dt of the tangent vector to the
curve (1.1) are transformed according to

(3.2)xi= (9;" x)x7 ;= 0/0xi
or in terms of differentials
(3.3) dxi = (dxV)dx?

A system of n-quantities X! whose transformation law under
(3.1) is analogous to that of the x'¢ is called a contravariant
vector attached to the point P(xi) of Fn. The individual X!
represents its components. Such contravarient vectors
attached to the point P(x?) constitute the elements of a vector
space and this vector space is said to be the tangent space
attached to the point P(xt) and is represented by Tr» (P) or Tn
(x).

This may be defined in terms of differentials as well. The
length of a vector ni of a vector n! Tn(P) is given by F(x%, ).
In view of (2.2d), all length in Tn(P) may be expressed in
terms of g, defined by (2.1), which we shall regard as the
components of the metric tensor of Tn(P).
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Definitaion (3.1)

A Finsler space Fn Is called Minkowskian space if there
exists a coordinate system in which the metric function F is
independent of x ([28],p.50)

Definition (3.2)
The indicatrix of Fn at a Point x! is defined by the equation
F(x, x) =1(xtis fixed) (16, 28, p. 12).

Definition (3.3)
A tensor T of Fn is called an indicatory ([17]) if its
components Tj...k satisfy

(34) Taj.....k:Tia. k= :0,

Where 0 denoted the contraction with xi
Corresponding to each aebitrary contravariant vector (xt of Tn
(p), there is a covariant vector yi, such that

(3.5) y' = gij(x, x")x’]

All such of vector associate with the point P of F), constitute
a vector space function of the which is named as dual tangent
space at P and is represented by

Tn(P) or T'n(P). The metric dual tangent space is the
Hamiltonian function H(xi, x'?) satisfying the three requisite
conditions for beang a Finsler space as have been stated in
section 1.

Analogous to the metric tensor gi(x,x )xJ, we define a tensor

gi(xk, yi) as

(3.6) gi(xk, yr) =13, 3 jx H2(x*, yr)’
2)

Where 9; denotes the partial differentiation with respect to the
covariant vector xJ

These quantities gij(x*, ykx) constitute the components of a
contravariant tensor of the type (2,0).

The quantities g defined by (2.1) and (3.6) are related by

k={1if i=k

(3.6) giig =&

From here we find (3.7) (a) g5gi;=n

0 other wise

Transecting (2.1) by xJ and using (3.5) we get

BR)yi=gyx¥ =19 F?=Fo  F
2

The vector xJ also satisfies the relations
(38) yix.j = F2 and (b) guj = at. Y= ay' Yi

4. (h) hv-Torsion Tensor and Generalised Christoffel
Symbol

From the metric tensor we construct a new tensor Cijk by

differentiating (2.1) partially with respect x . This new tensor

Cik is defined as

19,9y dx F2

@D Cik=10r" gi=
2 2
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This tensor is called the (h) hv-torsion tensor [18]. It is
positively homogenouse of degree-1 in x' and is symmetric
in all three of its indices. Because of its homogeneous
properties this tensor satisfies the following identities.
(4.2) (a) Cijex' = Ciix'i = Ckijx'i =0

(b) Cijkx'i = Crkix" j=0and (b) Ci yi=0

The tensor Cij is the associate tensor of Cik y: and is defined
by

(4.3) Cijk g"Cijc

This tensor is also positively homogeneous of degree-1 in x'i
and is symmetric in its lower indices.

Let us the generalized Christoffel symbols of first and second
kind, as Riemannian geometry by

(4.4) () yijk 1 (i gik + Ok gij — &' gri) and Yhir gy
2

5. Magnitude of A Vector the Notion of Orthogonality
The metric tensor gij(x, x*) may be used in two different way,
in defining the magnitude of a vector and also the angle
between two vectors.

Definition (5.1)
Let Vi be a vector then the scalar |V| given

(5.1) [VP = gii(x, v) VIVI
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