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Abstract

Understanding of the nonequilibrium evolution of domains in a phase separating system,
both from theoretical and experimental point of view, is of much research interest and of
fundamental importance. This article deals with the phase ordering kinetics of binary fluid
mixtures with a comparative picture of its solid counterpart. The theoretical foundation has
been presented in length in the introduction where I have precisely considered a system
consisting of binary Lennard-Jones fluid undergoing liquid-liquid phase separation for which
the results were obtained, mostly, from molecular dynamics simulation. Before getting into
the detailed description of the phase ordering dynamics and quantification of domain
coarsening process, the general concept of phase ordering kinetics in bulk systems has been
discussed. Following an early time diffusive domain growth, known as LS growth, the
system enters a faster growth regime when the hydrodynamic effects set in later. Similarly,
the nonequilibrium domain coarsening of a geometrically constrained system follows the
same trend as that of a bulk system with the only difference is the absence of linear growth
regime. Unlike the bulk systems where complete phase separation occurs at a very late time,
confinement compels the quasi-one-dimensional systems to settle in microscopic phase
separated equilibrium state.
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India.
Introduction thermal equilibrium and special treatments are needed to
Over the last few decades, with the emergence of describe their dynamic evolution. The general framework of

such disordered-to-ordered transition and the current
understanding of the kinetic aspects of the transition of two-
component binary liquids and related bio-mechanical
processes thus possess an immense importance in the branch
of Statistical Mechanics in Physics. At a higher temperature,
the system is in a homogeneous state. Following the sudden
quench below the transition temperature, the system falls out

interdisciplinary science, much attention has been paid in
discovering new avenues in soft condense matter systems.
Soft matter is a subfield of condensed matter that consists a
variety of physical systems which can be structurally
deformed by the application of external thermal or mechanical
perturbations in the order of magnitude of thermal
fluctuations. Typically, those include liquids, polymer gels,

colloids, granular materials, liquid crystals, and, most
importantly a huge number of biological materials. A number
of pioneering studies, combining experimental observations
with quantitative modelling, explained various degrees of
macroscopic aspects of systems consisting of passive and
active particles. Passive systems, in order to undergo
dynamical evolution, need external stimuli. To cite an
example, the vapor-liquid phase transition requires quench in
temperature from a high temperature to a low temperature that
must lies below the transition temperature [!. Since the
systems consume energies, they intrinsically remain out of
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of equilibrium and evolves towards the new equilibrium state
which is nothing but the phase separated ordered state -,
This transformation takes time and occurs via simultaneous
formation, growth and merging of domains of different phases
which is defined as the phase ordering dynamics or domain
coarsening process !, In case of a ferromagnetic substance,
at T>Tc, the system is in disordered state with zero net
magnetization. However, the system exhibits magnetization
below Tc which is known as spontaneous magnetization.
Now, during this temperature quench, the system evolves via
the formation and growth of regions of like spins. Similarly,
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when a binary mixture (4+B) is quenched from a
homogeneous phase at high temperature to a temperature
below the critical temperature (7¢), the equilibrium ceases to
exist and the system approaches the phase-separated state via
domain coarsening dynamics. The dynamic evolution of these
systems come up with a very interesting mechanisms in which
the domains grow in a power law fashion; /()~* B4, Here /(¢)
is the time dependent average size of the domains at a time ¢
and o is termed as growth exponent which depends on many
system-specific parameters among which order-parameter is
the most crucial one. In the context of an order-disorder
transition, the density difference between the liquid and vapor
phase (p I-p_g) is defined as a relevant order parameter. It
takes nonzero value below Tc¢ and with the increase of T, the
order parameter vanishes as 7 approaches 7c. In case of a
binary liquid mixture (4+B), the density is replaced by the
respective concentration of one of the components (say
p A=N _A/N, where N A and N are the number of 4 particles
and total number of particles, respectively). The system
remains in a homogeneous mixture of 4 and B particles at
above 7c and it separates into 4- and B- rich phases as we go
below Tc. Following a quench from homogeneous disordered
state, the evolution of a system to a new equilibrium (ordered)
state can be classified into different classes depending on the
growth mechanism involved. The growth laws alter
significantly depending on the conservation laws related to
the order parameter. When the algebraic sum of all the
components of the order parameter remains unchanged during
the course of evolution, we call it a conserved order parameter
dynamics. Domain coarsening in a binary fluid mixture
(A+B), in case of a liquid-liquid transition, is a classic
example of conserved order-parameter dynamics. Moreover,
inclusion of hydrodynamic effects can significantly change
the growth mechanism in case of conserved order parameter
dynamics. In the following, different scenarios are briefly
presented to address coarsening phenomena in corresponding
situations.

Domain Coarsening & Growth Mechanism in Different
Systems

Bulk Systems: In this section I discuss about different growth
laws for bulk phase ordering in d = 3, for scalar order
parameters. The kinetics of phase separation in a solid binary
mixture is studied via Monte Carlo simulation of the Ising
model. In this case one needs to incorporate the condition of

conservation of order parameter which is taken care by the
dwire)
order parameter continuity equation 4t

“7J Here J the

current density, is defined as j “=-Vp where ¥ is the chemical
potential. For the case of solid binary mixtures, the
predominant growth mechanism involved is the diffusive
transport of materials and one can relate the rate of the growth

I(t)

of average domain size with the interfacial tension, ¥+ as

dﬂ_t}/ "’]{/’r .
dt /1()® This immediately leads to 1(t)~t"3 which is

known as Lifshitz-Slyozov diffusive growth law 71, However,
the situation considerably changes in case of fluids and
polymers in which hydrodynamics plays a pivotal role and the
growth of domains becomes much faster. In this purpose,
instead of Monte Carlo simulation, a straight forward method
is deterministic Molecular Dynamics (MD) simulation of a
continuous potential model in which hydrodynamics is
automatically taken into account. In case of fluids, as in
solids, initially the growth occurs via diffusive mechanism.
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But the system enters into the hydrodynamic regime when the
size of the domains becomes considerably large. In d=3, for a
critical quench, one wusually apprehends interconnected
domain structures and the interfacial surface energy density

is balanced by the viscous stress. This produces Yt =
dl(z) 5 s . . .
Plar="/inn (" is the interface growth velocity and  is the

shear viscosity) and, from this, one can easily obtain e)~vt1s-
o referred as the viscous hydrodynamic growth. The
crossover from the early time diffusive regime to the linear
growth regime occurs when(® > (0272 D being the
diffusivity of the system. At later time it is required to balance

the surface energy density with the kinetic energy density
Y

dl(t),
(p?) that produces fa /('J"i)l’:2 and solution of this yields
We)~t /3 This is referred to as the inertial hydrodynamic
growth regime. So, the growth of domains in bulk fluids with
conserved order parameter can be classified in the following
manner B81;

1
t/3; initial dif fusive growth
Wt~ s 1 viscous hydrodynamic growth
73, inertial hydrodynamic growth

Systems under Geometrical Confinement

Considering the multiscale industrial applications like the
extraction of oil and natural gases from rocks, designing
technological devices etc., understanding the behaviour of
fluids under geometrical confinement is of immense
importance. Given that the system prefers to phase separate,
one can observe the dynamic evolution is of anisotropic by
nature. It is mostly due to the fact that only a few particles can
be accommodated along the confinement. Moreover, the
effects of finite system-size and presence of surfaces lead to a
phase behaviour which cannot be observed in its bulk
counterpart. Much attention has been invested in the past few
decades to understand quasi two-dimensional systems, e.g. in
a thin-film geometry U-#. The phase behaviour (including
wetting) as well as the kinetic evolution more or less bears
similarity with that of the bulk systems. However, in quasi
one-dimensional  systems, existing literatures merely
elucidates the coarsening dynamics. Conclusions from
therein, whatsoever, may be found inappropriate for low-
porosity mediums. Subsequently, both the experimental and
theoretical attention shifted to the “single pore model” that
predicts a “plug-tube-capsule” phase diagram ). Particularly
in those cases where the surfaces have biasness in attraction
towards one of the components in the mixture. A general
observation for weak surface (or in absence of attraction)
field, in quasi one-dimensional confinement, is quite
interesting. The confinement in narrow pores drives the
systems to “freeze” into structures of partially phase-
separated microscopic domains %, instead of a macroscopic
phase separated state, these domains settle in microscopically
phase separated metastable states are kinetically barred from
further condensation. The typical growth laws in this case are
as follows:

t/3;

.t{jt}-v{ .
t/3;

One cannot observe the linear growth regime which is an
attribute of geometrical confinement ['%),

initial dif fusive growth

inertial hydrodynamic growth
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Conclusions

In this article 1 have briefly presented the basic growth
mechanism and temporal evolution of domains during
nonequilibrium dynamics of binary fluid mixtures under a
quench below transition temperature. Analysing the evolving
domain sizes, for bulk systems, one can identify two distinct
power-law regimes. Following an early-stage diffusive
domains growth having an exponentlf} 3, the system enters a
relatively faster growth as hydrodynamics becomes
predominant. Surprisingly, for quasi one-dimensional systems
with geometrical confinement, linear viscous regime doesn’t
show up at a late time and it remains in the inertial
hydrodynamic regime (with exponent %3 before ‘freezing’ in
the equilibrium state. In this context, it would be worth
extending the present state of understanding by altering the
surface potential for the phase separated binary liquids under
confinement. Additionally, in future it would be interesting to
study the kinetics of vapor-liquid transition for a single
component fluid under confinement. The current framework
can be implicated to investigate morphologies and domain
growth kinetics of binary mixtures in much more complex
real systems.
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