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Abstract 
Understanding of the nonequilibrium evolution of domains in a phase separating system, 
both from theoretical and experimental point of view, is of much research interest and of 
fundamental importance. This article deals with the phase ordering kinetics of binary fluid 
mixtures with a comparative picture of its solid counterpart. The theoretical foundation has 
been presented in length in the introduction where I have precisely considered a system 
consisting of binary Lennard-Jones fluid undergoing liquid-liquid phase separation for which 
the results were obtained, mostly, from molecular dynamics simulation. Before getting into 
the detailed description of the phase ordering dynamics and quantification of domain 
coarsening process, the general concept of phase ordering kinetics in bulk systems has been 
discussed. Following an early time diffusive domain growth, known as LS growth, the 
system enters a faster growth regime when the hydrodynamic effects set in later. Similarly, 
the nonequilibrium domain coarsening of a geometrically constrained system follows the 
same trend as that of a bulk system with the only difference is the absence of linear growth 
regime. Unlike the bulk systems where complete phase separation occurs at a very late time, 
confinement compels the quasi-one-dimensional systems to settle in microscopic phase 
separated equilibrium state. 
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Introduction 
Over the last few decades, with the emergence of 
interdisciplinary science, much attention has been paid in 
discovering new avenues in soft condense matter systems. 
Soft matter is a subfield of condensed matter that consists a 
variety of physical systems which can be structurally 
deformed by the application of external thermal or mechanical 
perturbations in the order of magnitude of thermal 
fluctuations. Typically, those include liquids, polymer gels, 
colloids, granular materials, liquid crystals, and, most 
importantly a huge number of biological materials. A number 
of pioneering studies, combining experimental observations 
with quantitative modelling, explained various degrees of 
macroscopic aspects of systems consisting of passive and 
active particles. Passive systems, in order to undergo 
dynamical evolution, need external stimuli. To cite an 
example, the vapor-liquid phase transition requires quench in 
temperature from a high temperature to a low temperature that 
must lies below the transition temperature [1]. Since the 
systems consume energies, they intrinsically remain out of 

thermal equilibrium and special treatments are needed to 
describe their dynamic evolution. The general framework of 
such disordered-to-ordered transition and the current 
understanding of the kinetic aspects of the transition of two-
component binary liquids and related bio-mechanical 
processes thus possess an immense importance in the branch 
of Statistical Mechanics in Physics. At a higher temperature, 
the system is in a homogeneous state. Following the sudden 
quench below the transition temperature, the system falls out 
of equilibrium and evolves towards the new equilibrium state 
which is nothing but the phase separated ordered state [1-2]. 
This transformation takes time and occurs via simultaneous 
formation, growth and merging of domains of different phases 
which is defined as the phase ordering dynamics or domain 
coarsening process [1-4]. In case of a ferromagnetic substance, 
at T>Tc, the system is in disordered state with zero net 
magnetization. However, the system exhibits magnetization 
below Tc which is known as spontaneous magnetization. 
Now, during this temperature quench, the system evolves via 
the formation and growth of regions of like spins. Similarly, 
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when a binary mixture (A+B) is quenched from a 
homogeneous phase at high temperature to a temperature 
below the critical temperature (Tc), the equilibrium ceases to 
exist and the system approaches the phase-separated state via 
domain coarsening dynamics. The dynamic evolution of these 
systems come up with a very interesting mechanisms in which 
the domains grow in a power law fashion; l(t)~tα [3-4]. Here l(t) 
is the time dependent average size of the domains at a time t  
and α is termed as growth exponent which depends on many 
system-specific parameters among which order-parameter is 
the most crucial one. In the context of an order-disorder 
transition, the density difference between the liquid and vapor 
phase (ρ_l-ρ_g) is defined as a relevant order parameter. It 
takes nonzero value below Tc and with the increase of T, the 
order parameter vanishes as T approaches Tc. In case of a 
binary liquid mixture (A+B), the density is replaced by the 
respective concentration of one of the components (say 
ρ_A=N_A⁄N, where N_A and N are the number of A particles 
and total number of particles, respectively). The system 
remains in a homogeneous mixture of A and B  particles at 
above Tc  and it separates into A- and B- rich phases as we go 
below Tc. Following a quench from homogeneous disordered 
state, the evolution of a system to a new equilibrium (ordered) 
state can be classified into different classes depending on the 
growth mechanism involved. The growth laws alter 
significantly depending on the conservation laws related to 
the order parameter. When the algebraic sum of all the 
components of the order parameter remains unchanged during 
the course of evolution, we call it a conserved order parameter 
dynamics. Domain coarsening in a binary fluid mixture 
(A+B), in case of a liquid-liquid transition, is a classic 
example of conserved order-parameter dynamics. Moreover, 
inclusion of hydrodynamic effects can significantly change 
the growth mechanism in case of conserved order parameter 
dynamics. In the following, different scenarios are briefly 
presented to address coarsening phenomena in corresponding 
situations. 
 
Domain Coarsening & Growth Mechanism in Different 
Systems 
Bulk Systems: In this section I discuss about different growth 
laws for bulk phase ordering in d = 3, for scalar order 
parameters. The kinetics of phase separation in a solid binary 
mixture is studied via Monte Carlo simulation of the Ising 
model. In this case one needs to incorporate the condition of 
conservation of order parameter which is taken care by the 

order parameter continuity equation . Here , the 
current density, is defined as j ⃑=-∇μ  where  is the chemical 
potential. For the case of solid binary mixtures, the 
predominant growth mechanism involved is the diffusive 
transport of materials and one can relate the rate of the growth 
of average domain size  with the interfacial tension, as 

. This immediately leads to l(t)~t1/3 which is 
known as Lifshitz-Slyozov diffusive growth law [4-7]. However, 
the situation considerably changes in case of fluids and 
polymers in which hydrodynamics plays a pivotal role and the 
growth of domains becomes much faster. In this purpose, 
instead of Monte Carlo simulation, a straight forward method 
is deterministic Molecular Dynamics (MD) simulation of a 
continuous potential model in which hydrodynamics is 
automatically taken into account. In case of fluids, as in 
solids, initially the growth occurs via diffusive mechanism.  
 

But the system enters into the hydrodynamic regime when the 
size of the domains becomes considerably large. In d=3, for a 
critical quench, one usually apprehends interconnected 
domain structures and the interfacial surface energy density  
is balanced by the viscous stress. This produces  

 (  is the interface growth velocity and  is the 
shear viscosity) and, from this, one can easily obtain  [5-

6]; referred as the viscous hydrodynamic growth. The 
crossover from the early time diffusive regime to the linear 
growth regime occurs when ;  being the 
diffusivity of the system. At later time it is required to balance 
the surface energy density with the kinetic energy density 

 that produces  and solution of this yields 
. This is referred to as the inertial hydrodynamic 

growth regime. So, the growth of domains in bulk fluids with 
conserved order parameter can be classified in the following 
manner [5-8]: 
 

 
 
Systems under Geometrical Confinement 
Considering the multiscale industrial applications like the 
extraction of oil and natural gases from rocks, designing 
technological devices etc., understanding the behaviour of 
fluids under geometrical confinement is of immense 
importance. Given that the system prefers to phase separate, 
one can observe the dynamic evolution is of anisotropic by 
nature. It is mostly due to the fact that only a few particles can 
be accommodated along the confinement. Moreover, the 
effects of finite system-size and presence of surfaces lead to a 
phase behaviour which cannot be observed in its bulk 
counterpart. Much attention has been invested in the past few 
decades to understand quasi two-dimensional systems, e.g. in 
a thin-film geometry [7-8]. The phase behaviour (including 
wetting) as well as the kinetic evolution more or less bears 
similarity with that of the bulk systems. However, in quasi 
one-dimensional systems, existing literatures merely 
elucidates the coarsening dynamics. Conclusions from 
therein, whatsoever, may be found inappropriate for low-
porosity mediums. Subsequently, both the experimental and 
theoretical attention shifted to the “single pore model” that 
predicts a “plug-tube-capsule” phase diagram [9]. Particularly 
in those cases where the surfaces have biasness in attraction 
towards one of the components in the mixture. A general 
observation for weak surface (or in absence of attraction) 
field, in quasi one-dimensional confinement, is quite 
interesting. The confinement in narrow pores drives the 
systems to “freeze” into structures of partially phase-
separated microscopic domains [10]. instead of a macroscopic 
phase separated state, these domains settle in microscopically 
phase separated metastable states are kinetically barred from 
further condensation. The typical growth laws in this case are 
as follows:  
 

 
 
One cannot observe the linear growth regime which is an 
attribute of geometrical confinement [10]. 
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Conclusions 
In this article I have briefly presented the basic growth 
mechanism and temporal evolution of domains during 
nonequilibrium dynamics of binary fluid mixtures under a 
quench below transition temperature. Analysing the evolving 
domain sizes, for bulk systems, one can identify two distinct 
power-law regimes. Following an early-stage diffusive 
domains growth having an exponent , the system enters a 
relatively faster growth as hydrodynamics becomes 
predominant. Surprisingly, for quasi one-dimensional systems 
with geometrical confinement, linear viscous regime doesn’t 
show up at a late time and it remains in the inertial 
hydrodynamic regime (with exponent  before ‘freezing’ in 
the equilibrium state. In this context, it would be worth 
extending the present state of understanding by altering the 
surface potential for the phase separated binary liquids under 
confinement. Additionally, in future it would be interesting to 
study the kinetics of vapor-liquid transition for a single 
component fluid under confinement. The current framework 
can be implicated to investigate morphologies and domain 
growth kinetics of binary mixtures in much more complex 
real systems. 
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