

Microwave Assisted Synthesis of Indolyl Chalcones

*¹ Deekshaputra R. Birhade

*¹ Assistant Professor, Department of Chemistry, Shri Vyankatesh Arts, Commerce and Science College, Deulgaon Raja, Buldana, Maharashtra, India.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 5.231

Available online:

www.alladvancejournal.com

Received: 20/July/2023

Accepted: 23/Aug/2023

Abstract

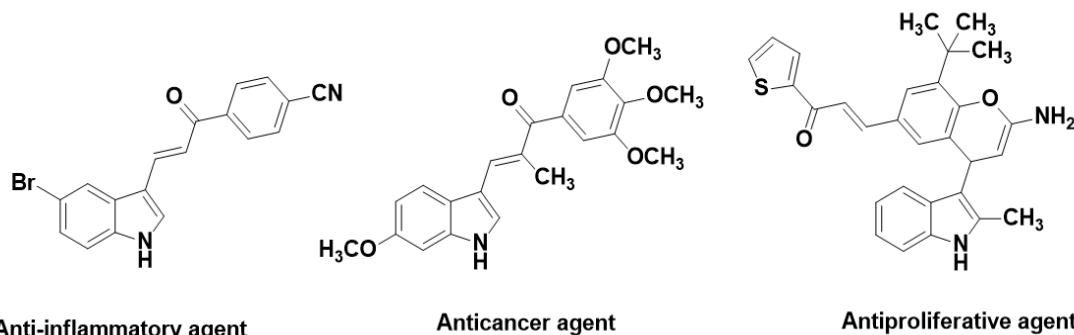
Chalcones exhibit diverse pharmacological activities such as antimalarial, anti-inflammatory, antitubercular, antioxidant, anti-AIDS, antibacterial, antileishmanial, anticancer, antipyretic and analgesic. Some chalcones possess bactericidal, antifungal and insecticidal activity and some of their derivatives are reported to be chemo preventive activity, antimutagenic, cardiovascular disease, cytotoxic activity, antiproliferative activity and antiviral activity and have been used as intermediate for the preparations of compounds having therapeutic value. Indole heterocycles are also an important bioactive compounds and it serves as a fundamental skeleton in naturally occurring alkaloids. Indole derivatives are known for their role as insecticidal, antimicrobial, painkillers, antiviral, antiinflammatory, anti-tubercular, depression medications, antineoplastic, antioxidants, antihypertensives, and anti-diabetic agents. In this work, we in search of new bioactive compounds Indole and different ketones are used to prepare a series of Indolyl-chalcones (3a-g) by microwave irradiation method and characterized by different spectroscopic techniques.

*Corresponding Author

Deekshaputra R. Birhade

Assistant Professor, Department of Chemistry, Shri Vyankatesh Arts, Commerce and Science College, Deulgaon Raja, Buldana, Maharashtra, India.

Keywords: Microwave, Chalcones, Indole, Anti-tubercular, Indole chalcones.


Introduction

The chalcones are α , β -unsaturated ketones containing the reactive ketoethylenic group. They are abundantly present in nature from ferns to higher plants [1]. Chalcones are most important precursors used for the preparations of compounds having therapeutic value. Literature review reveals that chalcone derivatives exhibit diverse pharmacological activities such as antimalarial, [2] anti-inflammatory, [3] antitubercular, [4] antioxidant, [5] anti-AIDS, [6] antibacterial, [7] antileishmanial, [8] anticancer, [9] antipyretic and analgesic. [10] Some chalcones possess bactericidal, antifungal and insecticidal activity and some of their derivatives are reported to be chemo preventive activity, [11] antimutagenic, [12] cardiovascular disease, [13] cytotoxic activity, antiproliferative activity [14] and antiviral activity [15].

N-heterocyclic compounds are also one of the most important pharmacophore for designing new and efficient drugs. Indole heterocycles is an important bioactive compound and it serves as a crucial skeleton in naturally occurring alkaloids like tryptophan, serotonin, reserpine and indole 3-acetic acid. [16] In addition, marine and bacterial Indole alkaloids show anti-

cancer, [17] anti-bacterial, [18] antiviral, [19] and anti-HIV [20] properties. Moreover, Indole derivatives are known for their role as insecticidal, [21] antimicrobial, [22,23] painkillers, [24] antiviral, [25] antiinflammatory, [26] anti-tubercular, [27,28] depression medications, [29] antineoplastic, [30] antioxidants, [17] antihypertensives, [31] and anti-diabetic [29] agents. The Food and Drug Administration has even published a database highlighting the importance of N-containing heterocyclic compounds in 2015 and Indole derivatives ranks 9th among the top 25 Food and Drug Administration approved drugs with 17 Indole containing drugs in the market [32].

Considering the above aspects it is noted that chalcones and Indol compounds combining can produce good results. That's why in a search new and novel biological active compounds molecular hybridization of Indole and Chalcone in drug designing is considered in the present study. Hybrid molecules can have modified selectivity, contrasting approaches of action, lesser unwanted aftereffects, improved solubility and oral bioavailability. Some biologically active Indol-Chalcones are as shown in figure 1.

Fig 1: Some Biologically active Indol-Chalcones

For synthesis of these hybrid Indole-chalcones different methods and catalyst have been used, but still there is scope for the development of the synthetic method for preparation of these compounds. Microwave-assisted synthesis, in general, has a large impact on synthetic organic chemistry compared to traditional processing of organic synthesis. Therefore, in the present investigation it has been considered worthwhile to synthesize some new Indolyl-chalcones by microwave irradiation method. Important features of this technique are easy access to very high temperature, good control over energy input in a reaction, higher yields and rapid synthesis of organic compounds. The synthesized compounds were purified by recrystallization and chromatography.

Materials and Methods

All reactions were run in dried glassware. Reagents were purchased (Spectrochem, Avra, SRL or Sigma-Aldrich) and used without further purification. Reactions were carried out in a domestic microwave oven. ¹H NMR spectrum was obtained in DMSO-d₆ on Bruker AV-400 (400 MHz) spectrometers using TMS as an internal standard.

General Procedure for Synthesis of Indolyl Chalcones Under Microwave Irradiation

Indole 3-carboxaldehyde (0.01 mole) and acetophenones (0.01 mole) was dissolved in aqueous ethanol (5 mL) taken in a borosil conical flask (100 mL) and potassium hydroxide (0.02 mole) was added in the reaction mixture. This conical flask was then placed inside a domestic microwave oven for 30 sec to 3 minutes at 50% power input. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled at room temperature and was poured into crushed ice (40 mL). Extraction was carried out with diethyl ether (15 x 3 mL) and dried over anhydrous sodium sulphate. Solvent was removed by simple heating on hot water bath (40 °C) and further purification was done by column chromatography.

Spectral Data

1. (E)-1-(4-fluorophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one (3a)

Yellow solid, Yield: 85%, ¹H NMR (DMSO-d₆, 400 MHz): δ 6.93 (1H d, J=36.1 Hz), 7.26 (s, 4H), 7.57 (2H d, J=43.5 Hz), 7.80 (s, 1H), 8.06 (d, J=14.2 Hz, 2H), 8.15 (2H d, J=27.8 Hz), 11.83 (s, 1H). ¹³C NMR (DMSO-d₆, 101 MHz): δ 187.94 (s), 139.81 (s), 137.98 (s), 135.52 (s), 133.90 (s), 131.48, 130.70 (s), 125.55 (s), 123.27 (s), 121.72 (s), 120.88 (s), 116.20 (s), 115.98 (s), 115.43 (s), 113.28, 112.95 (s). IR (KBr, cm⁻¹): 3412.5, 3060.4, 1715.5, 1606.4, 1417.6, 1607.6 and 1234.1 cm⁻¹.

2. (E)-1-(2,4-dichlorophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one (3b)

Yellow Solid, Yield: 90%, ¹H NMR (DMSO-d₆, 400 MHz): δ 7.07 (d, J=15.9 Hz, 1H), 7.27 – 7.19 (m, 2H), 7.38 (dd, J=8.2, 1.8 Hz, 1H), 7.47 (dd, J=16.1, 5.1 Hz, 3H), 7.65 (dd, J=28.9, 9.3 Hz, 2H), 7.89 (d, J=7.9 Hz, 1H), 11.45 (s, 1H). ¹³C NMR (DMSO-d₆, 101 MHz): δ 197.45 (s), 146.90 (s), 143.11 (s), 142.72 (s), 140.62 (s), 137.44 (s), 136.69 (s), 134.98 (s), 134.64 (s), 131.94 (s), 129.91 (s), 127.89 (s), 126.34 (s), 125.25 (s), 125.01 (s), 117.73 (s). IR (KBr, cm⁻¹): 3435.2, 3051.0, 1726.6, 1692.2 and 792.4 cm⁻¹.

3. (E)-1-(4-bromophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one (3c)

Yellow Solid, Yield: 90%, ¹H NMR (400 MHz, CDCl₃): δ 7.12 – 6.97 (m, 2H), 7.20 (d, J=3.5 Hz, 1H), 7.28 (d, J=4.3 Hz, 1H), 7.51 – 7.36 (d, 3H), 7.79 – 7.62 (m, 3H), 7.90 (d, J=15.4, 3.1 Hz, 1H), 10.90 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 189.45 (s), 140.12 (s), 137.79 (s), 132.03 (s), 131.63 (s), 129.75 (s), 125.28 (s), 122.98 (s), 121.36 (s), 120.30 (s), 115.83 (s), 113.47 (s), 112.48 (s). IR (KBr, cm⁻¹): 3401.7, 3261.9, 1709.1, 1613.0, 1073 cm⁻¹.

4. (E)-3-(1H-indol-3-yl)-1-(p-tolyl)prop-2-en-1-one (3d)

Yellow Brown Solid, Yield: 89%, ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.10 (d, J=15.6 Hz, 1H), 8.04 – 7.96 (m, 2H), 7.88 – 7.81 (m, 2H), 7.59 (dd, J=8.6, 6.9 Hz, 2H), 7.46 (dd, J=6.2, 2.8 Hz, 1H), 7.34 – 7.27 (m, 4H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 192.35 – 189.35 (m), 143.15 (s), 138.97 (s), 137.41 (s), 136.35 (s), 129.30 (s), 128.51 (s), 125.39 (s), 123.45 (s), 121.69 (s), 120.65 (s), 117.63 (s), 114.36 (s), 112.16 (s), 21.68 (s). IR (KBr, cm⁻¹): 3232.5, 1632.1, 1610.1, 1361.5 cm⁻¹.

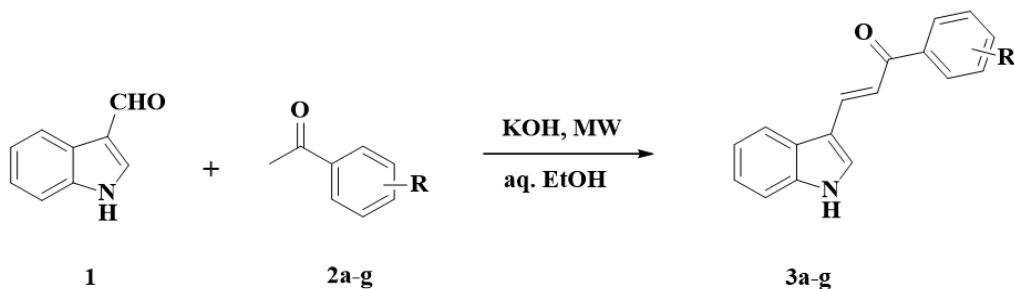
5. (E)-3-(1H-indol-3-yl)-1-(3-methoxyphenyl)prop-2-en-1-one (3e)

Brown solid, Yield: 85%, ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.12 (d, J=15.6 Hz, 1H), 8.03 – 7.97 (m, 1H), 7.65 (d, J=7.6 Hz, 1H), 7.61 – 7.54 (m, 3H), 7.50 – 7.38 (m, 2H), 7.29 (dd, J=5.8, 2.7 Hz, 2H), 7.13 (dd, J=8.1, 2.6 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 191.12 (s), 159.86 (s), 140.46 (s), 139.51 (s), 137.44 (s), 129.58 (s), 125.37 (s), 123.51 (s), 122.99 (s), 121.78 (s), 121.18 (s), 120.91 (s), 120.65 (s), 119.70 (s), 118.69 (s), 117.61 (s), 114.31 (s), 112.95 (s), 112.21 (s), 55.50 (s). IR (KBr, cm⁻¹): 3412.8, 3042.0, 1709.0, 1609.0 1289.2 cm⁻¹.

6. (E)-1-(3-aminophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one (3f)

Yellow Solid, Yield: 86%, ¹H NMR (400 MHz, DMSO-d₆): δ 12.00 (s, 1H), 8.39 (d, J=79.9 Hz, 1H), 8.12 (dd, J=30.2,

18.3 Hz, 3H), 7.77 – 7.66 (m, 1H), 7.56 (dd, J =19.5, 12.7 Hz, 3H), 7.42 – 7.33 (m, 1H), 7.24 (dd, J =10.0, 6.1 Hz, 3H), 7.08 (d, J =7.7 Hz, 1H). ^{13}C NMR (101 MHz, DMSO-d6): δ 189.24 (s), 148 (s), 139.92 (s), 139.44 (s), 138.04 (s), 133.87 (s), 129.93 (s), 125.51 (s), 123.19 (s), 121.65 (s), 121.13 (s), 115.89 (s), 113.21 (s), 113.00 (s). IR (KBr, cm^{-1}): 3439.2, 3182.0, 1647.1, 1560.1, 3347.1, 1605.8 cm^{-1} .


7. (E)-3-(1H-indol-3-yl)-1-(3-nitrophenyl)prop-2-en-1-one (3g)

Orange Solid, Yield: 81%, ^1H NMR (DMSO-d6, 400 MHz): δ 7.12 (dd, J =23.2, 19.1 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.55 – 7.50 (m, 2H), 7.82 – 7.77 (m, 1H), 8.00 (d, J =15.4 Hz, 1H), 8.23 – 8.15 (m, 2H), 8.64 (s, 1H), 10.94 (s, 1H). ^{13}C NMR (DMSO-d6, 101 MHz): δ 188.03 (s), 148.27 (s), 141.36 (s),

140.56 (s), 137.84 (s), 133.87 (s), 132.61 (s), 129.69 (s), 126.22 (s), 125.30 (s), 123.17 (s), 122.91 (s), 121.61 (s), 120.32 (s), 115.05 (s), 113.52 (s), 112.55 (s). IR (KBr, cm^{-1}): 3317.1 3211.2 1532.0, 1352.2 1710.9 1601.0 cm^{-1} .

Results and Discussion

Indolyl-Chalcone derivatives 3a-g was prepared by treating indole-3-carboxaldehyde 1 with different substituted acetophenones 2a-g through Claisene-Schmidt condensation under microwave irradiation using potassium hydroxide as base (Scheme 1) and ethanol is used as solvent. The reactions are carried in open borosil glass conical flasks. Structures of acetophenones and product chalcone were given in Table-1. The products obtained are in good yield (80-90%) in very shorter reaction time (1-3min.).

Fig 2: Scheme 1: Synthesis of Indolyl Chalcones

Table 1: Structures of Ketone (Substrate) and Indolyl-Chalcones (Product).

S. No.	Substrate (Ketone)	Product (Chalcone)	Yield (%)
01			85
02			90
03			90
04			89

05			85
06			86
07			81

Conclusion

In conclusion, we have developed a practically convenient methodology for the synthesis of Indole chalcones under microwave irradiation. The notable merits offered by this protocol are mild reaction condition, simple procedure, very short reaction time and excellent yield of the product. The identification of compounds was established by single spot TLC and spectral analysis involving IR, ¹H NMR, ¹³C NMR spectroscopy.

Acknowledgement

The author thanks, Principal, Shri Vyankatesh Arts, Commerce and Science College, Deulgaon Raja for infrastructural facility.

References

- Star AW, Marby TJ. Flavanoid front exudates from two Jamaican ferns, *Pityrogrammu tartarea* and *P Calomelanos*. *Phytochemistry*. 1971; 10:2812-2817.
- Chen M, Christensen SB, Zhai L, Rasmussen MH, Theander TG, Frokjaer S, *et al*. *Antimicrob. Agents Chemother*. 1994; 38:1470.
- (a) Won SJ, Liu CT, Tsao LT, Weng JR, Ko HH, Wang JP. *Eur J Med Chem*. 2005; 40:103-112.
(b) Kim Young, Hoon Kim, Jeongsoo, Park, Haeil, Kim, Hyun Pyo, *Biol. Pharm. Bull.* 2007; 30(8):1450-1455.
- Sivakumar PM, Seenivasan SP, Kumar V, Doble M. *Bioorg Med Chem Lett*. 2007; 17(6):1695.
- Cioffi G, Escobar LM, Braca A, De-Tommasi N. *J Nat Prod*. 2003; 66:1061.
- (a) Wu JH, Wang XH, Yi YH, Lee KH. *Bioorg Med Chem Lett*. 2003; 13(10):1813.
(b) Xu HX, Wan M, Dong H, But P, Foo LY. *Biol. Pharm. Bull.* 2000; 23:1072.
- Poppano NB, De-Centorbi OP, Debattist NB, De-Milan CC, Browkowski EJ, Feretti FH. *Rev Argent Microbiol, Chem Abstr*. 1986; 104:183206.
- Nielsen SF, Christensen SB, Cruciani G, Kharazmi A, Lilje fors TJ *Med Chem*, 1998; 41:4819-4832.
- (a) Sabzevari O, Galati G, Moridani MY, Siraki A, O'Brien PJ. *Chem Biol Interact*. 2004; 148:57-67.
(b) Francesco E, Salvatore G, Luigi M, Massimo C. *Phytochemistry*. 2007; 68:939.
- Satyanarayana K, Rao MNA. Anti-inflammatory, analgesic and anti-pyretic activities of 3-(4-(4-dimethylaminophenyl)-1-oxo-2-propenyl) phenyl sydnone. *Indian Drugs*. 1993; 30:313-318.
- Shen Jeu W, Cheng Tsung L, Lo Ti T, Jing Ru W, Hrogan Huey K, Jih Pyang W, *et al*. *Eur. J. Med. Chem*. 2005; 40:103.
- Torigoo T, Arisawa M, Iloch S, Fujiu M, Mayuyama HB. Anti-mutagenic chalcones: antagonizing the mutagenicity of benzo (a) pyrene in *Salmonella typhimurium*. *Biochem. Biophys. Res. Commun*. 1983; 112:833-842.
- Liming N, Kimberly WJ, Weingarten M, Janes SA. *PCT Int. Appl*, 2003, 411.
- Ducki S, Forrest R, Hadfield JA, Kendall A, Lawrence NJ, Mc Gown AT, *et al*. *Bioorg. Med. Chem. Lett*. 1998; 8:1051.
- Onyilagha JC, Malhotra B, Elder M, Towers GHN *Can. J. Plant Pathol*. 1997; 19:133.
- Sravanthi TV, Manju SL. Indoles d a promising scaffold for drug development, *Eur. J. Pharmaceut. Sci*, 2016, 91:10.
- Demurtas M, Baldisserotto A, Lampronti I, Moi D, Balboni G, Pacifico S, *et al*. Omnis, Indole derivatives as multifunctional drugs: synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones, *Bioorg. Chem*. 2019; 85:568e576.
- Abo-Ashour MF, Eldehna WM, George RF, Abdel-Aziz MM, Elaasser MM, Abdel Gawad NM. Novel indolethiazolidinone conjugates: design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents, *Eur. J. Med. Chem*. 2018; 160:49-60.
- Cutignano A, Bifulco G, Bruno I, Casapullo A, Gomez-Paloma L, Riccio R, Dragmacidin F. A new antiviral bromoindole alkaloid from the mediterranean sponge *Halicortex* sp, *Tetrahedron*. 2000; 56:3743e3748.
- Scott LJ, Perry CM. Delavirdine:a review of its use in HIV infection, *Drugs*. 2000; 60:1411e1444.

21. Costa ACF, Cavalcanti SCH, Santana AS, Lima APS, Brito TB. *et al.* Insecticidal activity of indole derivatives against *Plutella xylostella* and selectivity to four non-target organisms, *Ecotoxicology*. 2019; 28:973e982.
22. Sanna G, Madeddu S, Giliberti G, Piras S, Struga M, Wrzosek M. *et al.* Synthesis and biological evaluation of novel indolederived thioureas, *Molecules*. 2018; 23:2554.
23. Rakesh KP, Kumara HK, Ullas BJ, Shivakumara J, Channe Gowda D. Amino acids conjugated quinazolinone-Schiff's bases as potential antimicrobial agents: synthesis, SAR and molecular docking studies, *Bioorg. Chem.* 2019; 90:103093.
24. Hogendorf AS, Hogendorf A, Popiółek-Barczyk K, Ciechanowska A, Mika J, Satała G. *et al.* Fluorinated indole- imidazole conjugates: selective orally bioavailable 5-HT7 receptor lowbasicity agonists, potential neuropathic painkillers, *Eur. J. Med. Chem.* 2019; 170:261e275.
25. Scuotto M, Abdelnabi R, Collarile S, Schiraldi C, Delang L, Massa A. *et al.* Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication, *Bioorg. Med. Chem.* 2017; 25:327e337.
26. Bhat MA, Al-Omar MA, Raish M, Ansari MA, Abuelizz HA, Bakheit AH. *et al.* Indole derivatives as cyclooxygenase inhibitors: synthesis, biological evaluation and docking studies, *Molecules*. 2018; 23:1250.
27. Shirude PS, Shandil R, Sadler C, Naik M, Hosagrahara V, Hameed S. *et al.* Azaindoles: noncovalent DprE1 inhibitors from scaffold morphing efforts, kill *Mycobacterium tuberculosis* and are efficacious *in vivo*, *J. Med. Chem.* 2013; 56:9701-9708.
28. Rakesh KP, Shantharam CS, Sridhara MB, Manukumar HM, Qin HL. Benzisoxazole: a privileged scaffold for medicinal chemistry, *Med Chem Comm.* 2017; 8:2023e2039.
29. Bampi SR, Casaril AM, Domingues M, de Andrade Lourenço D, Pesarico AP, Vieira B. *et al.* Savegnago, Depression-like behavior, hyperglycemia, oxidative stress, and neuroinflammation presented in diabetic mice are reversed by the administration of 1-methyl-3-(phenylselanyl)-1H-indole, *J. Psychiatr. Res.* 2020; 120:91e102.
30. Peerzada MN, Khan P, Ahmad K, Hassan MI, Azam A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents, *Eur. J. Med. Chem.* 2018; 155:13e23.
31. Zhu W, Bao X, Ren H, Da Y, Wu D, Li F, *et al.* N-Phenyl indole derivatives as AT1 antagonists with anti-hypertension activities: design, synthesis and biological evaluation, *Eur. J. Med. Chem.* 2016; 115:161e178.
32. Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals, *J. Med. Chem.* 2014; 57:10257e10274.