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Abstract

In this paper, we study the subsemigroup of all order-reversing partial one to one
transformation (IOR ;). Let X _n={1,2,3,..,n} and Let a:-DomaSX n—ImEX n be
a partial one-to-one transformation on X,;. The elements of partial one to one
transformation semigroup were constructed and a subsemigroup of order-reversing
was identified. The following parameters are defined: the fix point of

a, fla) = {xa=x), the height of @ hia) = |imal, the positive waist of
a, w¥ (o) = max(ima), the derangement of a,d,(a)={a(x) =x}, the
idempotent of @, @~ = & and cardinality of order-reversing subsemigroup |I0R,,|
was computed. The combinatorial results for three variable functions for the order-

reversing subsemigroup discovered was enumerated using the parameters defined
above.

Keywords: Cardinality, fix point, height, right waist, derangement and idempotent

1. Introduction

Let X,, = (1,2,3, ...,n) and let Doma € X, and I'ma € X,,, then the transformation @: Doma — I'm is said to be total or
full if Doma = X, and strictly partial otherwise.

The height of & is denoted and defined by i) = |Ima|, the breadth of & is denoted and defined by b{e) = |[Dom(a)|, the
right waist of @ is denoted and defined by wt = max(Ima) , the left waist of & is defined and denoted by w~ = min(a) . The
fix point of @ (fix of @) is defined and denoted by fla) = |F(a)| = |{x € X,;: xor = x}| and idempotent of & is defined by
a? = & if and only if Ima=F (1) (Garba, 1990, 1994b; Laradji and Umar, 2006, 2007, Ganyusahkin and Manzochuk 2003,
Umar, 1997, 2010). The derangement of & is defined and denoted by du(rﬂ = {a(x) # x} (Bashir, 2008). The main object of

study in this paper is the order-reversing partial one-to-one transformation (2R ). The main objectives of this paper are to

compute up to three variable functions of (/OR,) and find their integer sequence from the on-line encyclopedia sequence

(Sloane, 2011).
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2.I0R.

Umar (2010) defined all order-reversing partial one-to-one transformation semigroup that for any & € I, and
xVvEDomox =y = xa = ya.

We investigated the elements of IOR , for n = {0,1,2,3,4,5} and find the fix point, height, right waist, idempotent and
derangement together with the cardinality.

Example 1: The semigroup 0 R; contains the following six elements (Umar 2010).

G DG G D6 NCEE )

2.1 Combinatorial Results for Order-Reversing (I0R,,)
First note that it seems reasonable to define k = 0if p = 0; and Fin:k) = F'[:Tl;pJ El=1ifk = 7 = 0 this and other

observations we record in the following lemma, proposition and corollaries which will be use implicitly whenever needed (Umar,
2010).

Lemma. Let X,=1{123,..,n}land P = {p,m,k,q}, where for a given @ € IODR, we set
p=hla),m=fla),k =w (a)and g = d,(a). We also defined F{n; k) = Fin;p, k) =1ifk=p=0.

Then, Im=zk=zp=m=0
2 k=1=2p=1,
3.p=0=k=0

The following are easy to prove, but nevertheless, we include its proof to demonstrate the technique.

Theorem: Let I,, = IOR,,, then [IOR,| = '[:”}J n =0

1 2
XX .l

For all the elements fx=( )E IOR, can be uniquely determined by X1.X2,...,%, for i =123,...,1. Set

¥; = X; + i, then the mapping between (X4, %2,..., %) = (31, ¥2,..., ¥,,) is a bijection between the set of all {X1,%3,..., %)
such that 1 = xy = x5, = - =X, =1 and the set of all (¥, ¥2,..., V) such that 1 =y Sy, = - =y, =n+n. If

follows that (V1, ¥2,+. ., ¥ ) is uniquely determined by the 11 — elements subset (¥, V2, w., ¥n) of {1,2,3, ...,2n}. Hence {:;:!}

Corollary 1 Let I,, = IOR,, then,

(n-!r-rii_l)m! 120, m=1 1<n<4
flasm) = { (m=n) nehomal
{1_3n+712—\/(1—§:+7n2—2n2+n4)} n>1———A078482

Corollary 2 Let I,, = IOR,, then,

n+p _

( M n=0 p=0
(;) n=0, p=0

() e

=n?p nzl, p=1

f(n; p) =9 (51 [) nz1, pz1, i20
((n 1 ((n— 1)+1))2 n22, p=2
((n l)gfnpl)ﬂ)) nz2, p=z0
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Corollary 3 Let I,, = IOR,, then,

r(n+:—l)
n+k=1
(")

f(n; k) =« (n+1)

k
1)

L (ZRn—l)

Corollary 4 Let I, = I0R,, then,

7(3")+ 2n +5
fln;a) = 4
a, = (n—d)*

Corollary 5 Let I, = I0R,, then,

(:rl + l) n(n+1)
) p+k!/ ptk
f(ﬂ; b} = Op =Qp-1+ AQp_3+ 0,4
4" +n
Iy = L1'11:':—1-" Qp-2
Corollary 6 Let I, = I0R,, then,
fln; &) ={a, =437 %)

Corollary 7 Let I,, = IOR,, then,

fln;i) = {ﬂn =2a,+(n—-1)

Corollary 8 Let I, = IOR,, then,
f{:ﬂ;j—} = {ﬂn = zﬂn—l tap-2— Ap-z
Corollary 9 Let I, = I0R,, then,

a, =2"(n*—3n+2n+48
48

fln; 1) = {

Corollary 10. Let I, = IOR;, then, f{:n; ﬁ'} ={a, = (1+ ﬂ::—l} (:n_z)
n-z

Corollary 11. Let I, = IOR,, then, the E(IOR,) =n + 1

Ay =0y +ay o +a, s +4n—8

https://alladvancejournal.com/

n>1 k>0
n2l, k=1
nz0
n>2, =
n>2 >0
n=>1, >
n=?2
n=daz=2
n=l p=k=1

Qg = l,ﬂ1=2,ﬂ3=3
n=2
ﬂ-[:.=2,ﬂ-1=5

ap=1a,=2, n=3

ay=1la,=1 n=x2

ay=1a,=3,a,=6, n=3

n=_0


https://alladvancejournal.com/

International Journal of Advance Studies and Growth Evaluation https://alladvancejournal.com/

3. Concluding Remarks

Remark 1: We have considered the order-reversing partial one-one transformation, but there still others parameters that was not
considered. Umar 2010 considered the union of order-reversing and order-preserving.

Remark 2: There are many sequences of numbers as at the time of writing this paper that are not yet listed/registered in the
Sloane’s Encyclopedia of Integer Sequence.

Remark 3: We considered only one class of transformation subsemigroup, however, there are other classes of transformation
subsemigroups that can be identified if studied.

Remark 4: We have considered only three variable functions, however one can compute forth variable functions and so on, but at
the moment it seems to be a difficult proposition.
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