

On the Order-Reversing Partial one-to-one Transformation Semigroup (IOR_n)

*¹Michael Cornelius, ²MI Bello ³NH Manjak and ⁴Ishiaku Zubairu

^{1,4}Tutor I, Department of Mathematics Unit, School of Basic and Remedial Studies, Gombe State University, Gombe, Nigeria.

^{2,3}Professor, Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

Article Info.

E-ISSN: 2583-6528

Impact Factor (SJIF): 5.231

Available online:

www.alladvancejournal.com

Received: 17/April/2023

Accepted: 31/May/2023

Abstract

In this paper, we study the subsemigroup of all order-reversing partial one to one transformation (IOR_n). Let $X_n = \{1, 2, 3, \dots, n\}$ and Let $\alpha: Dom\alpha \subseteq X_n \rightarrow Im\alpha \subseteq X_n$ be a partial one-to-one transformation on X_n . The elements of partial one to one transformation semigroup were constructed and a subsemigroup of order-reversing was identified. The following parameters are defined: the fix point of α , $f(\alpha) = \{x\alpha = x\}$, the height of α , $h(\alpha) = |Im\alpha|$, the positive waist of α , $w^+(\alpha) = \max(Im\alpha)$, the derangement of α , $d_n(\alpha) = \{\alpha(x) \neq x\}$, the idempotent of α , $\alpha^2 = \alpha$ and cardinality of order-reversing subsemigroup $|IOR_n|$ was computed. The combinatorial results for three variable functions for the order-reversing subsemigroup discovered was enumerated using the parameters defined above.

*Corresponding Author

Michael Cornelius

Tutor I, Department of Mathematics Unit, School of Basic and Remedial Studies, Gombe State University, Gombe, Nigeria.

Keywords: Cardinality, fix point, height, right waist, derangement and idempotent

1. Introduction

Let $X_n = \{1, 2, 3, \dots, n\}$ and let $Dom\alpha \subseteq X_n$ and $Im\alpha \subseteq X_n$, then the transformation $\alpha: Dom\alpha \rightarrow Im\alpha$ is said to be total or full if $Dom\alpha = X_n$ and strictly partial otherwise.

The height of α is denoted and defined by $h(\alpha) = |Im\alpha|$, the breadth of α is denoted and defined by $b(\alpha) = |Dom(\alpha)|$, the right waist of α is denoted and defined by $w^+ = \max(Im\alpha)$, the left waist of α is defined and denoted by $w^- = \min(\alpha)$. The fix point of α (fix of α) is defined and denoted by $f(\alpha) = |F(\alpha)| = |\{x \in X_n; x\alpha = x\}|$ and idempotent of α is defined by $\alpha^2 = \alpha$ if and only if $Im\alpha = F(\alpha)$ (Garba, 1990, 1994b; Laradji and Umar, 2006, 2007, Ganyushkin and Manzochuk 2003, Umar, 1997, 2010). The derangement of α is defined and denoted by $d_n(\alpha) = \{\alpha(x) \neq x\}$ (Bashir, 2008). The main object of study in this paper is the order-reversing partial one-to-one transformation (IOR_n). The main objectives of this paper are to compute up to three variable functions of (IOR_n) and find their integer sequence from the on-line encyclopedia sequence (Sloane, 2011).

2. IOR_n

Umar (2010) defined all order-reversing partial one-to-one transformation semigroup that for any $\alpha \in I_n$ and

$x, y \in Dom\alpha: x \leq y \Rightarrow x\alpha \geq y\alpha$.

We investigated the elements of IOR_n for $n = \{0, 1, 2, 3, 4, 5\}$ and find the fix point, height, right waist, idempotent and derangement together with the cardinality.

Example 1: The semigroup IOR_2 contains the following six elements (Umar 2010).

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & \emptyset \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \emptyset & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \emptyset & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & \emptyset \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \emptyset & \emptyset \end{pmatrix}.$$

2.1 Combinatorial Results for Order-Reversing (IOR_n)

First note that it seems reasonable to define $k = 0$ if $p = 0$; and $F(n; k) = F(n; p, k) = 1$ if $k = p = 0$ this and other observations we record in the following lemma, proposition and corollaries which will be use implicitly whenever needed (Umar, 2010).

Lemma. Let $X_n = \{1, 2, 3, \dots, n\}$ and $P = \{p, m, k, q\}$, where for a given $\alpha \in IOR_n$ we set $p = h(\alpha)$, $m = f(\alpha)$, $k = w^+(\alpha)$ and $q = d_n(\alpha)$. We also defined $F(n; k) = F(n; p, k) = 1$ if $k = p = 0$.

Then,

1. $n \geq k \geq p \geq m \geq 0$;
2. $k = 1 \Rightarrow p = 1$;
3. $p = 0 \Leftrightarrow k = 0$.

The following are easy to prove, but nevertheless, we include its proof to demonstrate the technique.

Theorem: Let $I_n = IOR_n$, then $|IOR_n| = \binom{2n}{n}$, $n \geq 0$.

For all the elements $\alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ x_1 & x_2 & \dots & x_n \end{pmatrix} \in IOR_n$ can be uniquely determined by x_1, x_2, \dots, x_n for $i = 1, 2, 3, \dots, n$. Set $y_i = x_i + i$, then the mapping between $(x_1, x_2, \dots, x_n) \rightarrow (y_1, y_2, \dots, y_n)$ is a bijection between the set of all (x_1, x_2, \dots, x_n) such that $1 \leq x_1 \leq x_2 \leq \dots \leq x_n \leq n$ and the set of all (y_1, y_2, \dots, y_n) such that $1 \leq y_1 \leq y_2 \leq \dots \leq y_n \leq n + n$. It follows that (y_1, y_2, \dots, y_n) is uniquely determined by the $n - elements$ subset (y_1, y_2, \dots, y_n) of $\{1, 2, 3, \dots, 2n\}$. Hence $\binom{2n}{n}$.

Corollary 1 Let $I_n = IOR_n$ then,

$$f(n; m) = \begin{cases} \binom{n+i-1}{m} m! & i \geq 0, \quad m = 1, \quad 1 \leq n \leq 4 \\ (m-n) & n \geq 2, \quad m \geq 2 \\ \frac{\{1-3n+n^2-\sqrt{(1-6n+7n^2-2n^2+n^4)}\}}{2n} & n \geq 1 \end{cases} \quad A078482$$

Corollary 2 Let $I_n = IOR_n$ then,

$$f(n; p) = \begin{cases} \binom{n+p}{n} & n \geq 0, \quad p = 0 \\ \binom{n}{p} & n \geq 0, \quad p \geq 0 \\ \binom{n^2}{p} = n^2 p & n \geq 1, \quad p = 1 \\ \binom{n^2}{p-i} & n \geq 1, \quad p \geq 1, \quad i \geq 0 \\ \left(\frac{(n-1)((n-1)+1)}{p}\right)^2 & n \geq 2, \quad p = 2 \\ \left(\frac{(n-1)((n-1)+1)}{n-p}\right) & n \geq 2, \quad p \geq 0 \end{cases}$$

Corollary 3 Let $I_n = IOR_n$ then,

$$f(n; k) = \begin{cases} \binom{n+k-1}{k} & n \geq 1, k \geq 0 \\ \binom{n+k-1}{n} & n \geq 1, k=1 \\ \binom{n+k}{n} & n \geq 0, k=0 \\ \binom{n+1}{k} & n \geq 2, k=2 \\ \binom{2k+1}{n-1} & n \geq 2, k \geq 0 \\ \binom{2k-1}{n} & n \geq 1, k \geq 1 \end{cases}$$

Corollary 4 Let $I_n = IOR_n$ then,

$$f(n; d) = \begin{cases} \frac{7(3^n) + 2n + 5}{4} & n \geq 2 \\ a_n = (n - d)^2 & n = d \geq 2 \end{cases}$$

Corollary 5 Let $I_n = IOR_n$ then,

$$f(n; b) = \begin{cases} \binom{n+1}{p+k} = \frac{n(n+1)}{p+k} & n \geq 1, p = k = 1 \\ a_n = a_{n-1} + a_{n-3} + a_{n-4} & a_0 = 1, a_1 = 2, a_3 = 3 \\ 4^n + n & n \geq 2 \\ a_n = 4a_{n-1} + a_{n-2} & a_0 = 2, a_1 = 5 \end{cases}$$

Corollary 6 Let $I_n = IOR_n$ then,

$$f(n; c) = \{a_n = 4(3^{n-3})\} \quad a_1 = 1, a_2 = 2, n \geq 3$$

Corollary 7 Let $I_n = IOR_n$ then,

$$f(n; i) = \begin{cases} a_n = 2a_{n-1} + (n-1) & a_0 = 1, a_2 = 1, n \geq 2 \\ a_n = a_{n-1} + a_{n-2} + a_{n-3} + 4n - 8 & n \geq 3 \end{cases}$$

Corollary 8 Let $I_n = IOR_n$ then,

$$f(n; j) = \{a_n = 2a_{n-1} + a_{n-2} - a_{n-3}\} \quad a_0 = 1, a_1 = 3, a_2 = 6, n \geq 3$$

Corollary 9 Let $I_n = IOR_n$ then,

$$f(n; l) = \begin{cases} a_n = 2^n(n^3 - 3n^2 + 2n + 48) & n \geq 0 \\ 48 \end{cases}$$

Corollary 10. Let $I_n = IOR_n$ then, $f(n, q) = \{a_n = (1 + a_{n-1}) \left(\frac{a_{n-2}}{a_{n-3}} \right)\}$ $a_0 = a_1 = a_2 = 1$

Corollary 11. Let $I_n = IOR_n$ then, the $E(IOR_n) = n + 1$ $n \geq 0$

3. Concluding Remarks

Remark 1: We have considered the order-reversing partial one-one transformation, but there still others parameters that was not considered. Umar 2010 considered the union of order-reversing and order-preserving.

Remark 2: There are many sequences of numbers as at the time of writing this paper that are not yet listed/registered in the Sloane's Encyclopedia of Integer Sequence.

Remark 3: We considered only one class of transformation subsemigroup, however, there are other classes of transformation subsemigroups that can be identified if studied.

Remark 4: We have considered only three variable functions, however one can compute forth variable functions and so on, but at the moment it seems to be a difficult proposition.

References

1. Bashir Ali Umar A. *Some Combinatorial Properties of the Alternating Group*. Southeast Asian Bulletin of Mathematics, 2008.
2. Borwein D, Rankin, Renner L. Enumeration of Injective Partial Transformation. *Discrete Math.* 1989; 73:291-296.
3. Clifford A, Preston G. *The Algebraic Theory of Semigroups*. Vol.1, Providence, R.I, American Mathematical Society, 1961.
4. Fernandes V, Gomes GMS, Jesus M. The Cardinal and Idempotent Number of Various Monoid of Transformation on a Finite Chain. *Bull Malays. Math. Sci. Soc.* 2011; 34:79-85.
5. Ganyushkin E, Manzochuk V. *On the Structure of 10_n* . *Semigroup Forum*. 2003; 66:455-483.
6. Ganyushkin E, Manzochuk V. Classical Finite Transformation Semigroup: An Introduction, Springer, London, 2009.
7. Garba GU. Idempotents in Partial Transformation Semigroup. *Portugal Mathematica*. 1990; 51:163-172.
8. Garba GU. On the Nilpotent Ranks of Partial Transformation Semigroups. *Portugal Mathematica*. 1994a; 51:185-204.
9. Garba GU. On the Idempotent Ranks of Certain Semigroups of Preserving Mapping. *Semigroup Forum*. 1994b; 51:185-204.
10. Garba GU. Nilpotent in Semigroups of Partial One-to-one Order-preserving Mapping. *Semigroup Forum*. 1994c; 48:37-49.
11. Howie JM. Products of Idempotents in Certain Semigroup of Transformations. *Proc. Edinburgh Math. Soc.* 1971; 17:223-236.
12. Howie JM. *Fundamentals of Semigroup Theory*. Oxford: Clarendon Press, 1995.
13. Laradji A, Umar A. On Number of Nilpotents in the Partial Symmetric Semigroup. *Comm.Algebra*. 2004; 32:3017-3023.
14. Laradji A, Umar A. Combinatorial Results for Semigroups of Order-preserving Partial Transformations. *J. Algebra*. 2004b; 278:342-359.
15. Laradji A, Umar A. Combinatorial Results for Semigroups of Order-decreasing Partial Transformations. *J. Integer Seq.* 7:04.3.8, 2004c.
16. Laradji A, Umar A. Combinatorial Results for Semigroups of Order-preserving Full Transformation. *Semigroup Forum*. 2006; 72:51-62.
17. Laradji A, Umar A. Combinatorial Results for the Symmetric Inverse Semigroup. *Semigroup Forum*. 2007; 75:221-236.
18. Liu CL. *Introduction to Combinatorial Results Mathematics*. McGraw Hill Company, New York, 1968.
19. Stanley RP. *Enumerative Combinatorics*. Cambridge University Press, 1997; I.
20. Stanley RP. *Enumerative Combinatorics*. Second Edition, 2011; I.
21. Sloane NJA (Ed.). *The On-line Encyclopedia of Integer Sequences*, 2011. Available at <http://oeis.org>
22. Umar A. Semigroups of Order-decreasing transformation, Ph.D. Thesis, University of St. Andrews, 1992a.
23. Umar A. On the Semigroups of Order-decreasing Finite Full Transformations. *Proc. Roy. Soc. Edinburgh*. 1992b; 120:129-142.
24. Umar A. Enumeration of Certain Finite Semigroups of Transformations. *Discrete Math.* 1998; 89:291-297.
25. Umar A. Some Combinatorial Problems in the Theory of Symmetric Inverse Semigroups. *Discrete Math.* 2010; 9:115-126.
26. Zubairu MM, Bashir Ali. On Certain Combinatorial Problems of the Semigroup partial and Full Contraction of a Finite Chain. *Bayero Journal of pure and applied Science*. 2018; 11(1):377-380.